Research article Special Issues

A comparative analysis of noise properties of stochastic binary models for a self-repressing and for an externally regulating gene

  • Correction on: Mathematical Biosciences and Engineering 18: 300-304
  • Received: 02 July 2020 Accepted: 05 August 2020 Published: 13 August 2020
  • This manuscript presents a comparison of noise properties exhibited by two stochastic binary models for: (ⅰ) a self-repressing gene; (ⅱ) a repressed or activated externally regulating one. The stochastic models describe the dynamics of probability distributions governing two random variables, namely, protein numbers and the gene state as ON or OFF. In a previous work, we quantify noise in protein numbers by means of its Fano factor and write this quantity as a function of the covariance between the two random variables. Then we show that distributions governing the number of gene products can be super-Fano, Fano or sub-Fano if the covariance is, respectively, positive, null or negative. The latter condition is exclusive for the self-repressing gene and our analysis shows the conditions for which the Fano factor is a sufficient classifier of fluctuations in gene expression. In this work, we present the conditions for which the noise on the number of gene products generated from a self-repressing gene or an externally regulating one are quantitatively similar. That is important for inference of gene regulation from noise in gene expression quantitative data. Our results contribute to a classification of noise function in biological systems by theoretically demonstrating the mechanisms underpinning the higher precision in expression of a self-repressing gene in comparison with an externally regulated one.

    Citation: Guilherme Giovanini, Alan U. Sabino, Luciana R. C. Barros, Alexandre F. Ramos. A comparative analysis of noise properties of stochastic binary models for a self-repressing and for an externally regulating gene[J]. Mathematical Biosciences and Engineering, 2020, 17(5): 5477-5503. doi: 10.3934/mbe.2020295

    Related Papers:

    [1] Silpak Biswas, Rintu Das, Ena Ray Banerjee . Role of free radicals in human inflammatory diseases. AIMS Biophysics, 2017, 4(4): 596-614. doi: 10.3934/biophy.2017.4.596
    [2] Andrew K. Martusevich, Alexander G. Galka, Konstantin A. Karuzin, Alexander N. Tuzhilkin, Svetlana L. Malinovskaya . Cold helium plasma as a modifier of free radical processes in the blood: in vitro study. AIMS Biophysics, 2021, 8(1): 34-40. doi: 10.3934/biophy.2021002
    [3] Nily Dan . Bilayer degradation in reactive environments. AIMS Biophysics, 2017, 4(1): 33-42. doi: 10.3934/biophy.2017.1.33
    [4] Mikayel Ginovyan, Svetlana Hovhannisyan, Hayarpi Javrushyan, Gohar Sevoyan, Zaruhi Karabekian, Narine Zakaryan, Naira Sahakyan, Nikolay Avtandilyan . Screening revealed the strong cytotoxic activity of Alchemilla smirnovii and Hypericum alpestre ethanol extracts on different cancer cell lines. AIMS Biophysics, 2023, 10(1): 12-22. doi: 10.3934/biophy.2023002
    [5] Domenico Lombardo . Scientific advance in biomembranes and biomimetic membranes of biophysical interest. AIMS Biophysics, 2022, 9(4): 341-345. doi: 10.3934/biophy.2022028
    [6] Gérald Gaibelet, François Tercé, Sophie Allart, Chantal Lebrun, Xavier Collet, Nadège Jamin, Stéphane Orlowski . Fluorescent probes for detecting cholesterol-rich ordered membrane microdomains: entangled relationships between structural analogies in the membrane and functional homologies in the cell. AIMS Biophysics, 2017, 4(1): 121-151. doi: 10.3934/biophy.2017.1.121
    [7] Daniela Meleleo, Cesare Sblano . Influence of cholesterol on human calcitonin channel formation. Possible role of sterol as molecular chaperone. AIMS Biophysics, 2019, 6(1): 23-38. doi: 10.3934/biophy.2019.1.23
    [8] Mostean Bahreinipour, Hajar Zarei, Fariba Dashtestani, Jamal Rashidiani, Khadijeh Eskandari, Seyed Ali Moussavi Zarandi, Susan Kabudanian Ardestani, Hiroshi Watabe . Radioprotective effect of nanoceria and magnetic flower-like iron oxide microparticles on gamma radiation-induced damage in BSA protein. AIMS Biophysics, 2021, 8(2): 124-142. doi: 10.3934/biophy.2021010
    [9] Marcelina Cardoso Dos Santos, Cyrille Vézy, Hamid Morjani, Rodolphe Jaffol . Single cell adhesion strength assessed with variable-angle total internal reflection fluorescence microscopy. AIMS Biophysics, 2017, 4(3): 438-450. doi: 10.3934/biophy.2017.3.438
    [10] Thi Minh Ngoc Ta, Cynthia Romero-Guido, Thi Hanh Phan, Hai Dang Tran, Hanh Tam Dinh, Yves Waché . Encapsulation of flavours into Yarrowia lipolytica active yeast cells. Fluorescence study of the lipid droplets morphology and steryl/sterol balance during the shock. AIMS Biophysics, 2022, 9(3): 257-270. doi: 10.3934/biophy.2022022
  • This manuscript presents a comparison of noise properties exhibited by two stochastic binary models for: (ⅰ) a self-repressing gene; (ⅱ) a repressed or activated externally regulating one. The stochastic models describe the dynamics of probability distributions governing two random variables, namely, protein numbers and the gene state as ON or OFF. In a previous work, we quantify noise in protein numbers by means of its Fano factor and write this quantity as a function of the covariance between the two random variables. Then we show that distributions governing the number of gene products can be super-Fano, Fano or sub-Fano if the covariance is, respectively, positive, null or negative. The latter condition is exclusive for the self-repressing gene and our analysis shows the conditions for which the Fano factor is a sufficient classifier of fluctuations in gene expression. In this work, we present the conditions for which the noise on the number of gene products generated from a self-repressing gene or an externally regulating one are quantitatively similar. That is important for inference of gene regulation from noise in gene expression quantitative data. Our results contribute to a classification of noise function in biological systems by theoretically demonstrating the mechanisms underpinning the higher precision in expression of a self-repressing gene in comparison with an externally regulated one.




    [1] M. Delbrück, Statistical fluctuations in autocatalytic reactions, J. Chem. Phys., 8 (1940), 120-124. doi: 10.1063/1.1750549
    [2] M. B. Elowitz, A. J. Levine, E. D. Siggia, P. S. Swain, Stochastic gene expression in a single cell, Science, 297 (2002), 1183-1186. doi: 10.1126/science.1070919
    [3] W. J. Blake, M. K?rn, C. R. Cantor, J. J. Collins, Noise in eukaryotic gene expression, Nature, 422 (2003), 633-637.
    [4] A. Raj, C. S. Peskin, D. Tranchina, D. Y. Vargas, S. Tyagi, Stochastic mrna synthesis in mammalian cells, PLOS Biol., 4 (2006), e309.
    [5] D. M. Suter, N. Molina, D. Gatfield, K. Schneider, U. Schibler, F. Naef, Mammalian genes are transcribed with widely different bursting kinetics, Science, 332 (2011), 472-474. doi: 10.1126/science.1198817
    [6] B. Munsky, G. Neuert, A. van Oudenaarden, Using gene expression noise to understand gene regulation, Science, 336 (2012), 183-187.
    [7] J. M. Raser, E. K. O'Shea, Noise in gene expression: origins, consequences, and control, Science, 309 (2005), 2010-2013.
    [8] A. M. Arias, P. Hayward, Filtering transcriptional noise during development: concepts and mechanisms, Nat. Rev. Genet., 7 (2006), 34-44. doi: 10.1038/nrg1750
    [9] G. Chalancon, C. N. Ravarani, S. Balaji, A. Martinez-Arias, L. Aravind, R. Jothi, et al., Interplay between gene expression noise and regulatory network architecture, Trends Genet., 28 (2012), 221-232.
    [10] A. Sanchez, I. Golding, Genetic determinants and cellular constraints in noisy gene expression, Science, 342 (2013), 1188-1193. doi: 10.1126/science.1242975
    [11] J. Ansel, H. Bottin, C. Rodriguez-Beltran, C. Damon, M. Nagarajan, S. Fehrmann, et al., Cellto-cell stochastic variation in gene expression is a complex genetic trait, PLoS Genet., 4 (2008), e1000049.
    [12] A. Brock, S. Krause, D. E. Ingber, Control of cancer formation by intrinsic genetic noise and microenvironmental cues, Nat. Rev. Cancer, 15 (2015), 499-509. doi: 10.1038/nrc3959
    [13] S. S. Shen-Orr, R. Milo, S. Mangan, U. Alon, Network motifs in the transcriptional regulation network of escherichia coli, Nat. Genet., 31 (2002), 64-68. doi: 10.1038/ng881
    [14] G. T. Reeves, The engineering principles of combining a transcriptional incoherent feedforward loop with negative feedback, J. Biol. Eng., 13 (2019).
    [15] N. Rosenfeld, M. B. Elowitz, U. Alon, Negative autoregulation speeds the response times of transcription networks, J. Mol. Biol., 323 (2002), 785-793. doi: 10.1016/S0022-2836(02)00994-4
    [16] A. Sancar, L. A. Lindsey-Boltz, T.-H. Kang, J. T. Reardon, J. H. Lee, N. Ozturk, Circadian clock control of the cellular response to DNA damage, FEBS Lett., 584 (2010), 2618-2625. doi: 10.1016/j.febslet.2010.03.017
    [17] M. A. Savageau, Comparison of classical and autogenous systems of regulations in inducible operons, Nature, 252 (1974), 546-549. doi: 10.1038/252546a0
    [18] S. Hooshangi, R. Weiss, The effect of negative feedback on noise propagation in transcriptional gene networks, Chaos, 16 (2006), 026108.
    [19] D. Nevozhay, R. M. Adams, K. F. Murphy, K. Josic, G. Balázsi, Negative autoregulation linearizes the dose-response and suppresses the heterogeneity of gene expression., Proc. Natl. Acad. Sci. U.S.A., 106 (2009), 5123-5128. doi: 10.1073/pnas.0809901106
    [20] A. Becskei, L. Serrano, Engineering stability in gene networks by autoregulation., Nature, 405 (2000), 590-593. doi: 10.1038/35014651
    [21] A. F. Ramos, J. E. M. Hornos, J. Reinitz, Gene regulation and noise reduction by coupling of stochastic processes, Phys. Rev. E, 91 (2015), 020701(R).
    [22] A. F. Ramos, J. E. M. Hornos, Symmetry and stochastic gene regulation., Phys. Rev. Lett., 99 (2007), 108103.
    [23] A. F. Ramos, J. Reinitz, Physical implications of so(2, 1) symmetry in exact solutions for a selfrepressing gene, J. Chem. Phys., 151 (2019), 041101.
    [24] J. N. Anastas, R. T. Moon, Wnt signalling pathways as therapeutic targets in cancer, Nat. Rev. Cancer, 13 (2013), 11-26. doi: 10.1038/nrc3419
    [25] C. K. Mirabelli, R. Nusse, D. A. Tuveson, B. O. Williams, Perspectives on the role of wnt biology in cancer, Sci. Signal., 12 (2019), eaay4494.
    [26] G. Balázsi, A. van Oudenaarden, J. J. Collins, Cellular decision making and biological noise: from microbes to mammals, Cell, 144 (2011), 910-925. doi: 10.1016/j.cell.2011.01.030
    [27] L. S. Tsimring, Noise in biology, Rep. Prog. Phys., 77 (2014), 026601.
    [28] K. Sneppen, Models of life: epigenetics, diversity and cycles, Rep. Prog. Phys., 80 (2017), 042601.
    [29] J. Peccoud, B. Ycart, Markovian modelling of gene product synthesis, Theor. Popul. Biol., 48 (1995), 222-234. doi: 10.1006/tpbi.1995.1027
    [30] J. E. M. Hornos, D. Schultz, G. C. P. Innocentini, J. Wang, A. M. Walczak, J. N. Onuchic, et al., Self-regulating gene: an exact solution., Phys. Rev. E, 72 (2005), 051907.
    [31] S. Iyer-Biswas, F. Hayot, C. Jayaprakash, Stochasticity of gene products from transcriptional pulsing, Phys. Rev. E, 79 (2009), 031911. doi: 10.1103/PhysRevE.79.031911
    [32] A. F. Ramos, G. C. P. Innocentini, J. E. M. Hornos, Exact time-dependent solutions for a selfregulating gene, Phys. Rev. E, 83 (2011), 062902.
    [33] A. F. Ramos, L. R. Gama, M. C. C. Morais, P. C. M. Martins, Chapter 14: Stochastic modeling for investigation of regulation of transcription of RKIP gene, Prognostic and Therapeutic Applications of RKIP in Cancer, Academic Press, (2020), 257-276.
    [34] A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert, M. A. Gillette, et al., Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles, Proc. Natl. Acad. Sci. U.S.A., 102 (2005), 15545-15550.
    [35] K. Park, T. Prüstel, Y. Lu, J. S. Tsang, Machine learning of stochastic gene network phenotypes, preprint, bioRxiv: 825943.
    [36] L. R. Gama, G. Giovanini, G. Balázsi, A. F. Ramos, Binary expression enhances reliability of messaging in gene networks, Entropy, 22 (2020), 479.
    [37] A. Bakk, R. Metzler, K. Sneppen, Sensitivity of OR in phage λ, Biophys. J., 86 (2004), 58-66.
    [38] A. Grönlund, P. Lötstedt, J. Elf, Transcription factor binding kinetics constrain noise suppression via negative feedback, Nat. Commun., 4 (2013), 1864.
    [39] D. C. Marciano, R. C. Lua, C. Herman, O. Lichtarge, Cooperativity of negative autoregulation confers increased mutational robustness, Phys. Rev. Lett., 116 (2016), 258104. doi: 10.1103/PhysRevLett.116.258104
    [40] K. S. Farquhar, D. A. Charlebois, M. Szenk, J. Cohen, D. Nevozhay, G. Balázsi, Role of network-mediated stochasticity in mammalian drug resistance, Nat. Commun., 10 (2019), 2766.
    [41] G. M. Cooper, The Cell: A Molecular Approach, 2nd edition, Sinauer Associates Inc, Sunderland (MA), 2000.
    [42] D. K. Hawley, W. R. McClure, Mechanism of activation of transcription initiation from the lambda-PRM promoter, J. Mol. Biol., 157 (1982), 493-525. doi: 10.1016/0022-2836(82)90473-9
    [43] A. R. Kim, C. Martinez, J. Ionides, A. F. Ramos, M. Z. Ludwig, N. Ogawa, et al., Rearrangements of 2.5 kilobases of noncoding dna from the drosophila even-skipped locus define predictive rules of genomic cis-regulatory logic, PLoS Genet., 9 (2013), e1003243.
    [44] M. R. Fabian, N. Sonenberg, W. Filipowicz, Regulation of mrna translation and stability by micrornas, Annu. Rev. Biochem., 79 (2010), 351-79. doi: 10.1146/annurev-biochem-060308-103103
    [45] R. Grima, D. R. Schmidt, T. J. Newman, Steady-state fluctuations of a genetic feedback loop: An exact solution, J. Chem. Phys., 137 (2012), 035104.
    [46] G. C. P. Innocentini, A. F. Ramos, J. E. M. Hornos, Comment on "steady-state fluctuations of a genetic feedback loop: an exact solution" [J. Chem. Phys. 137, 035104 (2012)], J. Chem. Phys., 142 (2015), 027101.
    [47] J. Holehouse, Z. Cao, R. Grima, Stochastic modeling of autoregulatory genetic feedback loops: A review and comparative study, Biophys. J., 118 (2020), 1517-1525. doi: 10.1016/j.bpj.2020.02.016
    [48] C. Jia, R. Grima, Small protein number effects in stochastic models of autoregulated bursty gene expression, J. Chem. Phys., 152 (2020), 084115.
    [49] Z. Cao, R. Grima, Analytical distributions for detailed models of stochastic gene expression in eukaryotic cells, Proc. Natl. Acad. Sci. U.S.A., 117 (2020), 4682-4692. doi: 10.1073/pnas.1910888117
    [50] R. Yvinec, L. G. S. da Silva, G. N. Prata, J. Reinitz, A. F. Ramos, Bursting on a two state stochastic model for gene transcription in drosophila embryos, preprint, bioRxiv: 107979.
    [51] N. Kumar, T. Platini, R. V. Kulkarni, Exact distributions for stochastic gene expression models with bursting and feedback, Phys. Rev. Lett., 113 (2014), 268105.
    [52] T. Tripathi, D. Chowdhury, Interacting RNA polymerase motors on a DNA track: Effects of traffic congestion and intrinsic noise on RNA synthesis, Phys. Rev. E, 77 (2008), 011921.
    [53] S. Choubey, J. Kondev, A. Sanchez, Deciphering transcriptional dynamics in vivo by counting nascent rna molecules, PLoS Comput. Biol., 11 (2015), e1004345.
    [54] H. Xu, S. O. Skinner, A. M. Sokac, I. Golding, Stochastic kinetics of nascent rna, Phys. Rev. Lett., 117 (2016), 128101.
    [55] M. Thattai, A. van Oudenaarden, Intrinsic noise in gene regulatory networks, Proc. Natl. Acad. Sci. USA, 98 (2001), 8614-8619.
    [56] G. C. P. Innocentini, J. E. M. Hornos, Modeling stochastic gene expression under repression., J. Math. Biol., 55 (2007), 413-431. doi: 10.1007/s00285-007-0090-x
    [57] V. Shahrezaei, P. S. Swain, Analytical distributions for stochastic gene expression, Proc. Natl. Acad. Sci. USA, 105 (2008), 17256-17261. doi: 10.1073/pnas.0803850105
    [58] Z. Cao, R. Grima, Linear mapping approximation of gene regulatory networks with stochastic dynamics, Nat. Commun., 9 (2018), 3305.
    [59] A. F. Ramos, G. C. P. Innocentini, F. M. Forger, J. E. M. Hornos, Symmetry in biology: from genetic code to stochastic gene regulation, IET Syst. Biol., 4 (2010), 311-329. doi: 10.1049/iet-syb.2010.0058
    [60] R. Andersson, A. Sandelin, Determinants of enhancer and promoter activities of regulatory elements, Nat. Rev. Genet., 21 (2019), 71-87.
    [61] N. Rosenfeld, T. J. Perkins, U. Alon, M. B. Elowitz, P. S. Swain, A fluctuation method to quantify in vivo fluorescence data, Biophys. J., 91 (2006), 759-766. doi: 10.1529/biophysj.105.073098
    [62] G. N. Prata, J. E. M. Hornos, A. F. Ramos, Stochastic model for gene transcription on drosophila melanogaster embryos, Phys. Rev. E, 93 (2016), 022403.
    [63] M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series vol. 55, 10th edition, U.S. Department of Commerce, Washington (DC), 1972.
    [64] O. Hallikas, K. Palin, N. Sinjushina, R. Rautiainen, J. Partanen, E. Ukkonen, et al., Genome-wide prediction of mammalian enhancers based on analysis of transcription-factor binding affinity, Cell, 124 (2006), 47-59.
    [65] C. P. Fulco, J. Nasser, T. R. Jones, G. Munson, D. T. Bergman, V. Subramanian, et al., Activityby-contact model of enhancer-promoter regulation from thousands of CRISPR perturbations, Nat. Genet., 51 (2019), 1664-1669.
    [66] I. Heemskerk, K. Burt, M. Miller, S. Chhabra, M. C. Guerra, L. Liu, et al., Rapid changes in morphogen concentration control self-organized patterning in human embryonic stem cells, eLife, 8 (2019), e40526.
    [67] A. Paré, D. Lemons, D. Kosman, W. Beaver, Y. Freund, W. McGinnis, Visualization of individual scr mrnas during drosophila embryogenesis yields evidence for transcriptional bursting, Curr. Biol., 19 (2009), 2037-2042. doi: 10.1016/j.cub.2009.10.028
    [68] A. Crudu, A. Debussche, O. Radulescu, Hybrid stochastic simplifications for multiscale gene networks, BMC Syst. Biol., 3 (2009), 89: 1-89: 25.
    [69] H. Kuwahara, S. T. Arold, X. Gao, Beyond initiation-limited translational bursting: the effects of burst size distributions on the stability of gene expression, Integr. Biol., 7 (2015), 1622-1632. doi: 10.1039/c5ib00107b
    [70] J. M. Pedraza, A. van Oudenaarden, Noise propagation in gene networks, Science, 307 (2005), 1965-1969.
    [71] L. A. Sepúlveda, H. Xu, J. Zhang, M. Wang, I. Golding, Measurement of gene regulation in individual cells reveals rapid switching between promoter states, Science, 351 (2016), 1218-1222. doi: 10.1126/science.aad0635
    [72] D. Chetverina, M. Fujioka, M. Erokhin, P. Georgiev, J. B. Jaynes, P. Schedl, Boundaries of loop domains (insulators): Determinants of chromosome form and function in multicellular eukaryotes, BioEssays, 39 (2017), 1600233.
    [73] J. Mozziconacci, M. Merle, A. Lesne, The 3d genome shapes the regulatory code of developmental genes, J. Mol. Biol., 432 (2020), 712-723. doi: 10.1016/j.jmb.2019.10.017
    [74] P. P. Fiziev, The heun functions as a modern powerful tool for research in different scientific domains, preprint, arXiv: 1512.04025.
    [75] T. Fournier, J. Gabriel, C. Mazza, J. Pasquier, J. Galbete, N. Mermod, Steady-state expression of self-regulated genes, Bioinformatics, 23 (2007), 3185-3192. doi: 10.1093/bioinformatics/btm490
    [76] D. Lepzelter, H. Feng, J. Wang, Oscillation, cooperativity, and intermediates in the self-repressing gene, Chem. Phys. Lett., 490 (2010), 216-220.
    [77] E. S. Cheb-Terrab, A. D. Roche, Hypergeometric solutions for third order linear odes, preprint, arXiv: 0803.3474.
  • This article has been cited by:

    1. Kobra Hajizadeh, Kamal Hajisharifi, Hasan Mehdian, Morphological risk assessment of cold atmospheric plasma-based therapy: bone marrow mesenchymal stem cells in treatment zone proximity, 2019, 52, 0022-3727, 495203, 10.1088/1361-6463/ab3f65
    2. Suzan Kastamonuluoğlu, Kemal Büyükgüzel, Ender Büyükgüzel, Murray Isman, The Use of Dietary Antifungal Agent Terbinafine in Artificial Diet and Its Effects on Some Biological and Biochemical Parameters of the Model Organism Galleria mellonella (Lepidoptera: Pyralidae), 2020, 113, 0022-0493, 1110, 10.1093/jee/toaa039
    3. Jose Javier Garcia-Medina, Vicente Zanon-Moreno, Maria Dolores Pinazo-Duran, Elisa Foulquie-Moreno, Elena Rubio-Velazquez, Ricardo P. Casaroli-Marano, Monica del-Rio-Vellosillo, 2020, 9780128157763, 49, 10.1016/B978-0-12-815776-3.00005-X
    4. Edward Huang, Townshend White, Beibei Wang, Huanhuan Shi, Jiayang Liu, Disinfection of Escherichia coli by a Reactive Electrochemical Membrane System Involving Activated Carbon Fiber Cloth (ACFC), 2019, 11, 2073-4441, 430, 10.3390/w11030430
    5. Adi Prayitno, RA Oetari, Idin Shahiddin, Aldissa Yova Elmanda, Anita Dwi Septiarini, Hasriyani Hasriyani, Luky Dharmayanti, Yuneka Saristiana, Yunita Dian Permata Sari, α-Mangosteen from Garcinia Mangostana Linn and its Effect in Blood Insulin and Sugar Levels in Hyperglycemic Rat, 2021, 12, 13098578, em00770, 10.29333/jcei/9767
    6. Sabah Mohammad K, Adnan Saleem Jar, Taghleb Muhammad-F, Antimicrobial and Lipid Peroxidation Inhibition Potential of Ziziphus Spina-christi (Sedr), A Jordanian Medicinal Plant, 2019, 19, 17273048, 131, 10.3923/jbs.2019.131.136
    7. Eleazar Chukwuemeka Anorue, Grace Nneka Onwubiko, Henry Amaechi Onwubiko, Chinweike Norman Asogwa, Oxidative effects of cyanogenic glycosides residuals in cassava products on human haemoglobin, 2020, 22124292, 100846, 10.1016/j.fbio.2020.100846
    8. The analyze of lung’s GSH number in rats exposed by cigarette smoke and inducted by rambutan peel extract, 2018, 983, 1742-6588, 012179, 10.1088/1742-6596/983/1/012179
    9. Joanna Dulińska-Litewka, Yoav Sharoni, Przemysław Hałubiec, Agnieszka Łazarczyk, Oskar Szafrański, James A. McCubrey, Bartosz Gąsiorkiewicz, Piotr Laidler, Torsten Bohn, Recent Progress in Discovering the Role of Carotenoids and Their Metabolites in Prostatic Physiology and Pathology with a Focus on Prostate Cancer—A Review—Part I: Molecular Mechanisms of Carotenoid Action, 2021, 10, 2076-3921, 585, 10.3390/antiox10040585
    10. Murside Ayse Demirel, Mehmet Eray Alcigir, Ozcan Ozkan, Merve Biskin Turkmen, The effects of antivenom administrations on the brain tissue of experimentally envenomed pregnant rats and their pups with Androctonus crassicauda scorpion venom during organogenesis period, 2021, 200, 00410101, 13, 10.1016/j.toxicon.2021.06.011
    11. Anbu S, Boomiga S, Suresh A, Padma J, Phytochemical Screening and Antimicrobial Activity of Ziziphus oenoplia Seed Extract, 2022, 0974-360X, 615, 10.52711/0974-360X.2022.00101
    12. Masoud Soheili, Azam Alinaghipour, Mahmoud Salami, Good bacteria, oxidative stress and neurological disorders: Possible therapeutical considerations, 2022, 301, 00243205, 120605, 10.1016/j.lfs.2022.120605
    13. Elizabeth M. Bolitho, Carlos Sanchez-Cano, Huayun Shi, Paul D. Quinn, Maria Harkiolaki, Cinzia Imberti, Peter J. Sadler, Single-Cell Chemistry of Photoactivatable Platinum Anticancer Complexes, 2021, 143, 0002-7863, 20224, 10.1021/jacs.1c08630
    14. R. Jamshidi, K. Hajizadeh, Cold atmospheric plasma risk assessment: stem cells, 2020, 7, 23760060, 93, 10.15406/jlprr.2020.07.00236
    15. Abimbola Motunrayo Folami, Samuel Ayodele Iwarere, Feroz Mahomed Swalaha, 2021, Chapter 791, 978-3-031-12917-9, 177, 10.1007/698_2021_791
    16. Shangtao Liang, Hui Lin, Mussie Habteselassie, Qingguo Huang, Electrochemical inactivation of bacteria with a titanium sub-oxide reactive membrane, 2018, 145, 00431354, 172, 10.1016/j.watres.2018.08.010
    17. Didik Priyandoko, Wahyu Widowati, Hanna Sari Widya Kusuma, Ervi Afifah, Cahyaning Riski Wijayanti, Cintani Dewi Wahyuni, Amannah Mutmainnah Idris, Rizka Amelia Putdayani, Rizal Rizal, 2021, Antioxidant Activity of Green Tea Extract and Myricetin, 978-1-6654-4181-0, 1, 10.1109/InHeNce52833.2021.9537285
    18. Dong Sub Kim, Hyo‐Jung Lee, Deok Yong Sim, Ji Eon Park, Youngsang Park, Bonglee Kim, Bumsang Shim, Sung‐Hoon Kim, The underlying hepatoprotective mechanism of PKC #963 in alcohol or carbon tetrachloride induced liver injury via inhibition of iNOS , COX ‐2, and p‐STAT3 and enhancement of SOD and catalase , 2023, 37, 0951-418X, 505, 10.1002/ptr.7630
    19. K. Dondoladze, M. Nikolaishvili, T. Museliani, G. Jikia, EFFECT OF RADIATION ON AGING PROCESSES AND TELOMERE LENGTH, 2022, 27, 23048336, 107, 10.33145/2304-8336-2022-27-107-119
    20. Osman V. Patel, Charlyn Partridge, Karen Plaut, Space Environment Impacts Homeostasis: Exposure to Spaceflight Alters Mammary Gland Transportome Genes, 2023, 13, 2218-273X, 872, 10.3390/biom13050872
    21. Alistair V. W. Nunn, Geoffrey W. Guy, Jimmy D. Bell, Informing the Cannabis Conjecture: From Life’s Beginnings to Mitochondria, Membranes and the Electrome—A Review, 2023, 24, 1422-0067, 13070, 10.3390/ijms241713070
    22. Oluwaseun Ruth Alara, Chinonso Ishmael Ukaegbu, Nour Hamid Abdurahman, John Adewole Alara, Hassan Alsaggaf Ali, Plant-sourced Antioxidants in Human Health: A State-of-Art Review, 2023, 19, 15734013, 817, 10.2174/1573401319666230109145319
    23. Feng Li, Yixin Mi, Ronn Zhi Ning Chen, Wei Liu, Ji Wu, Deyin Hou, Min Yang, Sui Zhang, A radical polymer membrane for simultaneous degradation of organic pollutants and water filtration, 2024, 121, 0027-8424, 10.1073/pnas.2315688121
    24. Siliang Liu, Chenyu Ding, Jixiang Sun, Yuxi Liu, Zhongkai Wang, Trabecular bone-inspired tung oil-derived spongy cellular networks with intelligent pH-responsive wettability and superelasticity for efficient multitasking separation, 2024, 488, 13858947, 150863, 10.1016/j.cej.2024.150863
    25. Saara Ahmad (Muddasir Khan), Farzana Abubakar Yousuf, 2024, 9780443188077, 17, 10.1016/B978-0-443-18807-7.00002-8
    26. O. S. Yaremkevych, O. M. Fedoryshyn , Research on the antioxidant properties of extracts from stemless carline thistle (Carlina acaulis l.), mountain arnica (Arnica montana l.) and pot marigold (Calendula officinalis l.), 2024, 7, 26177307, 103, 10.23939/ctas2024.01.103
    27. Fifi Fauziah Ramadhani, , Mulberry (Morus alba L.) leaf extract enhanced spermatozoa motility, viability, and plasma membrane integrity of rats (Rattus norvegicus) exposed to e-cigarette smoke, 2024, 13, 2722-967X, 120, 10.20473/ovz.v13i2.2024.120-128
    28. Marwa M. Attia, Sara S. Barsoum, Hanadi B. A. Baghdadi, Olfat A. Mahdy, Sohila M. EL Gameel, Evaluation of different inflammatory markers during the infection of domestic cats (Felis catus) by Cystoisospora felis (Coccidia: Apicomplexa), 2024, 20, 1746-6148, 10.1186/s12917-024-04295-2
    29. Meng Zhang, Doudou Shi, Mimi Cui, Jinyong Li, Wenjing Cheng, Chunhong Pu, Jiachan Zhang, Changtao Wang, Saccharomyces cerevisiae fermentation of high molecular weight hyaluronic acid enhanced the antioxidant capacity in skin fibroblasts, 2025, 207, 0302-8933, 10.1007/s00203-025-04274-7
    30. Melike Kücükkarapinar, Hans Reuter, 2025, 84, 9780443237522, 425, 10.1016/B978-0-443-23752-2.00010-4
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5038) PDF downloads(157) Cited by(7)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog