
Citation: Bernhard Voelkl. Quantitative characterization of animal social organization: Applications for epidemiological modelling[J]. Mathematical Biosciences and Engineering, 2020, 17(5): 5005-5026. doi: 10.3934/mbe.2020271
[1] | Heman Shakeri, Faryad Darabi Sahneh, Caterina Scoglio, Pietro Poggi-Corradini, Victor M. Preciado . Optimal information dissemination strategy to promote preventivebehaviors in multilayer epidemic networks. Mathematical Biosciences and Engineering, 2015, 12(3): 609-623. doi: 10.3934/mbe.2015.12.609 |
[2] | Anji Yang, Baojun Song, Sanling Yuan . Noise-induced transitions in a non-smooth SIS epidemic model with media alert. Mathematical Biosciences and Engineering, 2021, 18(1): 745-763. doi: 10.3934/mbe.2021040 |
[3] | Antonios Armaou, Bryce Katch, Lucia Russo, Constantinos Siettos . Designing social distancing policies for the COVID-19 pandemic: A probabilistic model predictive control approach. Mathematical Biosciences and Engineering, 2022, 19(9): 8804-8832. doi: 10.3934/mbe.2022409 |
[4] | Avery Meiksin . Using the SEIR model to constrain the role of contaminated fomites in spreading an epidemic: An application to COVID-19 in the UK. Mathematical Biosciences and Engineering, 2022, 19(4): 3564-3590. doi: 10.3934/mbe.2022164 |
[5] | Eunha Shim . Optimal strategies of social distancing and vaccination against seasonal influenza. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1615-1634. doi: 10.3934/mbe.2013.10.1615 |
[6] | Qianqian Zheng, Jianwei Shen, Lingli Zhou, Linan Guan . Turing pattern induced by the directed ER network and delay. Mathematical Biosciences and Engineering, 2022, 19(12): 11854-11867. doi: 10.3934/mbe.2022553 |
[7] | Marco Arieli Herrera-Valdez, Maytee Cruz-Aponte, Carlos Castillo-Chavez . Multiple outbreaks for the same pandemic: Local transportation and social distancing explain the different "waves" of A-H1N1pdm cases observed in México during 2009. Mathematical Biosciences and Engineering, 2011, 8(1): 21-48. doi: 10.3934/mbe.2011.8.21 |
[8] | Swarnali Sharma, Vitaly Volpert, Malay Banerjee . Extended SEIQR type model for COVID-19 epidemic and data analysis. Mathematical Biosciences and Engineering, 2020, 17(6): 7562-7604. doi: 10.3934/mbe.2020386 |
[9] | Quentin Griette, Jacques Demongeot, Pierre Magal . What can we learn from COVID-19 data by using epidemic models with unidentified infectious cases?. Mathematical Biosciences and Engineering, 2022, 19(1): 537-594. doi: 10.3934/mbe.2022025 |
[10] | Sharon M. Cameron, Ariel Cintrón-Arias . Prisoner's Dilemma on real social networks: Revisited. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1381-1398. doi: 10.3934/mbe.2013.10.1381 |
Waste issue is a global concern and is on the rise due to the growth of urban areas and population, with predictions showing a potential increase of 70% by 2050 if no measures are taken to address it [1]. To effectively manage waste, various techniques are utilized including source reduction and waste minimization [2], recycling [3], waste-to-energy [4], landfill management [5] and education and awareness [6]. With the increasing complexity of waste composition and the absence of a standardized waste classification system make waste identification challenging, resulting in disparities in waste generation and management practices across different regions [7,8]. Comprehending household solid waste management practices is essential for the progress of integrated solid waste management [9]. Identifying waste plays a pivotal role in the waste management process as it enables facilities to manage, recycle and diminish waste suitably while ensuring compliance with regulations and monitoring their advancement over time.
Various studies and approaches that utilize deep learning models for efficient waste sorting and management which can contribute to a more sustainable environment has been done. Models such as RWNet [10], Garbage Classification Net [11], Faster Region-Based Convolutional Neural Network [12] and ConvoWaste [13] were proposed and evaluated for their high accuracy and precision rates in waste classification. These studies also highlight the importance of accurate waste disposal in fighting climate change and reducing greenhouse gas emissions. However, the model used may necessitate particular hardware or may have limitations confined to a paper. Some studies also incorporate IoT [14] and waste grid segmentation mechanisms [15] to classify and segregate waste items in real time.
By integrating machine learning models with mobile devices, waste management efforts can be made more precise, efficient and effective. One of the research uses an app that utilizes optimized deep learning techniques to instantly classify waste into trash, recycling and compost with an accuracy of 0.881 on the test set [16]. While it shows the potentiality the benchmarking with other state of art model is still needed and is limited in classifying waste into three types. In response, we introduce MWaste a mobile app that utilizes computer vision and deep learning techniques to classify waste materials into trash, plastic, paper, metal, glass or cardboard types. The app provides users with suggestions on how to manage waste in a more straightforward and fun way.
The app is tested on various neural network architectures and real-world images, achieving highest precision of 92% on the test set. This app can function with or without an internet connection and rewards users by mapping the carbon footprint of the waste they managed. The app's potential to facilitate efficient waste processing and minimize greenhouse gas emissions that arise from improper waste disposal can help combat climate change. Additionally, the app can furnish valuable data for tracking the waste managed and preserved carbon footprints. The rest of this paper is structured as follows: Methods section explains the MWaste system architecture. The Training section covers the training process and the Evaluation section explains experimental evaluations. Lastly, the Conclusion section summarizes research findings.
Classifying waste using machine learning is a challenging task since determining the recyclability or compostability of waste based on images is difficult due to the properties of the material being hard to detect from images. Besides, waste can take on various shapes and forms which requires machine learning techniques to handle such variability and the recyclability of waste depends on the local recycling center's capabilities which the app must consider. Taking those considerations into account, the app is designed in such a way that feedbacks are collected from users and can operate smoothly with or without an internet connection. The waste image is obtained from the gallery or camera and is passed through the waste classification model which is trained to categorize the waste. The classification model is the result of training a specific CNN model on a dataset of labeled images. Several state of the art convolutional neural network methods are tested in this research which included Inception V3 [17], MobileNet V2 [18], Inception Resnet V2 [19], Resnet 50 [20], Mobile Net [21] and Xception [22]. The model is then converted into TensorFlow Lite model as they are highly optimized, efficient and versatile making them ideal for running real-time predictions on mobile. The workflow of MWaste app is shown in Figure 1.
Once identified, the model calculates the carbon emissions associated with the material and provides waste management recommendations. For misclassification, users can submit the waste image for further analysis. Managing waste earns reward points and the amount of carbon footprint saved is also tracked. An internet connection is required to submit wrongly predicted waste images and sync accumulated points.
This section describes the training procedure and parameter settings used in this research.
For this research publicly available trashnet dataset [23] is utilized, consisting of 2527 images across six classes. Glass, paper, cardboard, plastic, metal and trash. These images were captured using Apple iPhone 7 Plus, Apple iPhone 5S and Apple iPhone SE with the objects placed on a white posterboard in sunlight or room lighting. The distribution of data based on their label counts is shown in Figure 2. The dataset consists of 501 images of glasses, 410 images of metals, 403 images of cardboard, 482 images of plastic and 137 images of trash. The annotations for the dataset were performed by experts.
To accommodate the variations in orientations of recycled material and expand the dataset size several data augmentation techniques were employed. These included random rotation, brightness adjustment, translation, scaling and shearing. Furthermore, mean subtraction and normalization were applied to the images. Example of sample images from the dataset are shown in Figure 3. For robustness 70% of the images were used for training, 13% for testing and 17% for validation.
The gathered dataset is processed through different models while keeping all parameters constant. Subsequently, the outcomes are attentively analyzed. Categorical cross-entropy is employed to gauge the loss as it is suitable for multiclass problems [24]. Meanwhile, accuracy serves as a metric and Adam is the optimizer of choice given that it applies momentum and adaptive gradient for computing adaptive learning rates for each parameter [25].
Global average pooling is added to create one feature map per category in the final convolutional layer for the classification task [26]. Three dense layers are then employed to learn complex functions and improve the accuracy of classification. To avoid overfitting, dropout is added as a regularization technique [27]. Softmax is used as an activation function to convert the output values into probabilities [28].
In this section, different evaluation metrics are discussed and the results are compared based on them.
The evaluation measures can be used to explain the performance of various models. The study employs the Accuracy Score and F1 Score as evaluation metrics.
Classification accuracy is defined as the percentage of accurate predictions out of the total number of samples analyzed. To calculate accuracy in classification, the number of correct predictions is divided by the total number of predictions and the resulting fraction is expressed as a percentage by multiplying it by 100 [29]. The formula for the accuracy score is as follows (Eq 1).
(1) |
When attempting to compare two models with contrasting levels of accuracy and recall such as one with poor precision but strong recall, it can be challenging. Improving accuracy may have an adverse effect on recall and vice versa which can result in confusion [30]. Hence, the F1-score is utilized as a means of comparing the two sets and serves as a valuable metric for evaluating both recall and precision simultaneously.
The F1-score is employed when dealing with imbalanced class data situations [31]. As most real-world classification problems involve uneven case distributions, the F1-score is a more suitable metric for evaluating the model compared to accuracy (Eq 2).
(2) |
Models are evaluated with same settings and their outputs are measured using evaluation metrics: accuracy score, and f1-score. After comparing the models as shown in Table 1, it can be seen that InceptionResNetV2 and Xception have higher accuracy but the loss is higher for InceptionResNetV2 and InceptionV3 models. Figure 6 illustrates the classification result of a waste material from the given training set. Accuracy and loss of each model during training along with each iterations is shown in Figure 4.
Methods | MobileNet | Inception V3 | Inception ResNet V2 | ResNet 50 | MobileNet V2 | Xception |
Cardboard | 0.94 | 0.95 | 0.97 | 0.91 | 0.97 | 0.96 |
Glass | 0.85 | 0.86 | 0.90 | 0.86 | 0.78 | 0.91 |
Metal | 0.86 | 0.88 | 0.91 | 0.83 | 0.86 | 0.95 |
Paper | 0.91 | 0.92 | 0.96 | 0.86 | 0.93 | 0.94 |
Plastic | 0.89 | 0.88 | 0.91 | 0.86 | 0.83 | 0.90 |
Trash | 0.52 | 0.68 | 0.68 | 0.41 | 0.32 | 0.67 |
Accuracy | 0.87 | 0.89 | 0.92 | 0.84 | 0.86 | 0.92 |
Models are trained with same settings i.e. using NVIDIA Tesla T4 GPU in Colab and there execution time is noted. The results are shown in Table 2.
Methods | MobileNet | Inception V3 | Inception ResNet V2 | ResNet 50 | MobileNet V2 | Xception |
Parameters | 5855942 | 25478438 | 5855942 | 27263366 | 5855942 | 24537134 |
Time (in seconds) | 1031.14 | 1172.39 | 999.01 | 1230 | 999.10 | 1794.85 |
Based on the above table we can observe that MobileNet, MobileNetV2 and InceptionResNetV2 have same parameters. Among these models InceptionV3 and MobileNetV2 demonstrate shorter training times. However, Xception stands out with a longer training time despite its high parameters. Figure 5 displays the confusion matrix for each model using the given dataset. This matrix indicates the performance, strengths and weaknesses of each model and can also assist in identifying problematic class predictions.
This study presents a mobile application that utilizes deep learning techniques to classify waste in real-time. The performance and cost effectiveness of several state of the art waste classification models are evaluated and the most optimal model is selected. In our case, we found Inception ResNetV2. Afterwards, the model undergoes a minimization process and is integrated into the application, enabling waste categorization into six distinct groups. Plastic, paper, metal, glass, cardboard and trash. The app incorporates gamification strategies such as a leaderboard based on waste management points to motivate users to dispose of waste properly and is made available to public*.
*https://github.com/sumn2u/deep-waste-app
The team plans to improve the accuracy of the classification system, form partnerships with local recycling companies and expand the dataset to raise awareness of environmental impacts and reduce incorrect waste disposal.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
My heartfelt appreciation goes out to Gary Thung and Mindy Yang for sharing the TrashNet dataset on Github for public use. This dataset has proven to be an invaluable asset for my research or project on waste management and classification and I am deeply thankful for their hard work in gathering and disseminating this information to a larger audience.
The author declares no conflict of interest in this paper.
[1] | E. O. Wilson, Sociobiology: The New Synthesis, Belknap Press, 1975. |
[2] | R. A. Hinde, Ethology: Its Nature and Relation with Other Sciences, Oxford University Press, 1982. |
[3] | H. Whitehead, Analyzing Animal Societies, University of Chicago Press, 2008. |
[4] | A. F. Fraser, D. M. Broom, Farm Animal Behaviour and Welfare, CAB International, 1997. |
[5] | E. O. Price, Animal Domestication and Behaviour, CABI Publishing, 2002. |
[6] | R. A. Hinde, Primate Social Relationships, Blackwell Scientific Publications, 1983. |
[7] | T. T. Strusaker, Correlates of ecology and social organization among African cercopithecines, Folia Primatol., 11 (1969), 80-118. |
[8] | S. R. Sundaresan, I. R. Fishhoff, J. Dushoff, D. I. Rubenstein, Network metrics reveal differences in social organization between two fission-fusion species, Grevy's zebra and onager, Oecologia, 151 (2007), 140-149. |
[9] | D. P. Croft, R. James, J. Krause, Exploring Animal Social Networks, Princeton University Press, 2008. |
[10] | T. Wey, D. T. Blumstein, W. Shen, F. Jordan, Social network analysis of animal behaviour: A promising tool for the study of sociality, Anim. Behav., 75 (2008), 333-344. |
[11] | C. Kasper, B. Voelkl, A social network analysis of primate groups, Primates, 50 (2009), 343-356. |
[12] | J. Moreno, Who Shall Survive?, Beacon, 1934. |
[13] | J. Scott, P. J. Carrington, The SAGE Handbook of Social Network Analysis, SAGE Publications, 2011. |
[14] | G. A. Lundberg, M. Steel, Social attraction-patterns in a village, Sociometry, 1 (1938), 375-419. |
[15] | J. A. Barnes, Class and committee in a Norwegian island parish, Hum. Relat., 7 (1954), 39-58. |
[16] | J. H. Levine, The sphere of influence, Am. Sociol. Rev., 37 (1972), 14-27. |
[17] | M. Granowetter, The strength of weak ties, Am. J. Sociol., 78 (1973), 1360-1380. |
[18] | B. Ryan, N. C. Gross, The diffusion of hybrid seed corn in two Iowa communities, Rural Sociol., 8 (1943), 15-24. |
[19] | E. Katz, H. Levine, M. L. Hamilton, Traditions of research on the diffusion of innovation, Am. Sociol. Rev., 28 (1963), 237-253. |
[20] | S. Milgram, The small-world problem, Psychol. Today, 2 (1964), 60-67. |
[21] | E. M. Rogers, Diffusion of Innovations, Free Press, 2003. |
[22] | M. Bond, Social influences on corporate political donations in Britain, Brit. J. Sociol., 55 (2004), 55-77. |
[23] | D. Knoke, Policy Networks, in The SAGE Handbook of Social Network Analysis (eds. J. Scott, P. J. Carrington), SAGE Publications, 2011, 210-222. |
[24] | M. Diani, Social Movements and collective actions, in The SAGE Handbook of Social Network Analysis (eds. J. Scott, P. J. Carrington), SAGE Publications, 2011, 223-235. |
[25] | M. O. Jackson, Social and Economic Networks, Princeton University Press, 2008. |
[26] | A. L. Barabâsi, J. Hawoong, N. Zoltan, R. Erzsebet, A. Schubert, T. Vicsek, Evolution of the social network of scientific collaborations, Phys. A, 311 (2002), 590-614. |
[27] | M. E. Newman, Coauthorship networks and patterns of scientific collaboration, Proc. Natl. Acad. Sci. USA, 101 (2004), 5200-5205. |
[28] | D. J. Watts, S. H. Strogatz, Collective dynamics of "small-world" networks, Nature, 393 (1998), 440-442. |
[29] | M. E. Newman, Networks: An Introduction, Oxford University Press, 2010. |
[30] | H. Kummer, Soziales Verhalten einer Mantelpavianen-Gruppe, Schweizerische Zeitschr. Psychol., 33 (1957), 1-91. |
[31] | D. S. Sade, Some aspects of parent-off spring and sibling relations in a group of rhesus monkeys, with a discussion of grooming, Am. J. Phys. Anthropol., 23 (1965), 1-18. |
[32] | R. A. Hinde, Interactions, relationships and social structure, Man, 11 (1976), 1-17. |
[33] | R. W. Byrne, A. Whiten, S. P. Henzi, Social relationships of mountain baboons: Leadership and affiliation in a non-female-bonded monkey, Am. J. Primatol., 207 (1989), 191-207. |
[34] | B. D. Chepko-sade, K. P. Reitz, D. S. Sade, Sociometrics of Macaca mulatta IV: Network analysis of social structure of a pre-fission group, Soc. Netw., 11 (1989), 293-314. |
[35] | C. A. Chapman, Association patterns of spider monkeys: The influence of ecology and sex on social organization, Behav. Ecol. Sociobiol., 26 (1990), 409-414. |
[36] | C. P. Yeager, Proboscis monkey (Nasalis larvatus) social organization: Group structure, Am. J. Primatol., 106 (1990), 95-106. |
[37] | D. S. Sade, Sociometrics of Macaca mulatta I. Linkage, cliques in grooming matrices, Fol. Primatol., 18 (1972), 196-223. |
[38] | D. S. Sade, Sociometrics of Macaca mulatta Ⅲ. n-path centrality in grooming networks, Soc. Netw., 11 (1989), 273-292. |
[39] | D. S. Sade, M. Altmann, J. Loy, G. Hausfater, J. A. Breuggeman, Sociometrics of Macaca mulatta: Ⅱ. Decoupling centrality and dominance in rhesus monkey social networks, Am. J. Phys. Anthropol., 77 (1988), 409-425. |
[40] | S. Wasserman, K. Faust, Social Network Analysis: Methods and Applications, Cambridge University Press, 1994. |
[41] | M. Barthelemy, B. Gondran, E. Guichard, Spatial structure of the internet traffic, Phys. A, 319 (2003), 633-642. |
[42] | P. Bonacich, Factoring and weighting approaches to status scores and clique identification, J. Math. Sociol., 2 (1972), 113-120. |
[43] | M. E. J. Newman, A measure of betweenness centrality based on random walks, Soc. Netw., 27 (2005), 39-54. |
[44] | M. E. J. Newman, M. Girvan, Finding and evaluating community structure in networks, Phys. Rev. E, 69 (2004), 026113. |
[45] | A. Clauset, Finding local community structure in networks, Phys. Rev. E, 72 (2005), 026132. |
[46] | M. E. J. Newman, Modularity and community structure in networks, Proc. Natl. Acad. Sci. USA, 103 (2006), 8577-8582. |
[47] | D. Knoke, S. Yang, Social network analysis, Sage Publications, 2019. |
[48] | D. Lusseau, The emergent properties of a dolphin social network, Biol. Lett., 270 (2003), 186-188. |
[49] | D. P. Croft, J. Krause, R. James, Social networks in the guppy (Poecilia reticulata), Biol. Lett., 271 (2004), 516-519. |
[50] | B. Voelkl, Does group structure influence the social transmission of information?, Fol. Primatol., 75 (2004), 423. |
[51] | D. P. Croft, R. James, A. J. W. Ward, M. S. Botham, D. Mawdsley, J. Krause, Assortative interactions and social networks in fish, Oecologia, 143 (2005), 211-219. |
[52] | J. C. Flack, M. Girvan, F. B. M. de Waal, D. C. Krakauer, Policing stabilizes construction of social niches in primates, Nature, 439 (2006), 426-429. |
[53] | C. Sueur, O. Petit, Organization of group members at departure Is driven by social structure in Macaca, Int. J. Primatol., 29 (2008), 1085-1089. |
[54] | S. P. Henzi, D. Lusseau, T. Weingrill, Cyclicity in the structure of female baboon social networks, Behav. Ecol. Sociobiol., 63 (2009), 1015-1021. |
[55] |
J. Lehmann, C. Boesch, Sociality of the dispersing sex: The nature of social bonds in West African female chimpanzees, Pan troglodytes, Anim. Behav., 77 (2009), 377-387. doi: 10.1016/j.anbehav.2008.09.038
![]() |
[56] | J. Lehmann, R. I. M. Dunbar, Network cohesion, group size and neocortex size in female-bonded Old World primates, Proc. R. Soc. B, 276 (2009), 4417-4422. |
[57] | G. Ramos-Fernández, D. Boyer, F. Aureli, L. G. Vick, Association networks in spider monkeys (Ateles geoffroyi), Behav. Ecol. Sociobiol., 63 (2009), 999-1013. |
[58] | N. J. B. Boogert, S. M. Reader, W. Hoppitt, K. N. Laland, The origin and spread of innovations in starlings, Anim. Behav., 75 (2008), 1509-1518. |
[59] | B. Voelkl, R. Noë, The influence of social structure on the propagation of social information in artificial primate groups: A graph-based simulation approach, J. Theoret. Biol., 252 (2008), 77-86. |
[60] | M. Franz, C. L. Nunn, Network-based diffusion analysis: A new method for detecting social learning, Proc. R. Soc. B, 276 (2009), 1829-1836. |
[61] | C. Vital, P. Martins, Using graph theory metrics to infer information flow through animal social groups: A computer simulation analysis, Ethology, 115 (2009), 347-355. |
[62] | W. Hoppitt, A. Kandler, J. R. Kendal, K. N. Laland, The effect of task structure on diffusion dynamics: Implications for diffusion curve and network-based analyses, Learn. Behav., 38 (2010), 243-251. |
[63] | L. M. Aplin, D. R. Farine, J. Morand-Ferron, A. Cockburn, A. Thornton, B. C. Sheldon, Experimentally induced innovations lead to persistent culture via conformity in wild birds, Nature, 7540 (2015), 538. |
[64] | B. Voelkl, C. Kasper, Social structure of primate interaction networks facilitates the emergence of cooperation, Biol. Lett., 5 (2009), 462-464. |
[65] | B. Voelkl, The "Hawk-Dove" game and the spread of the evolutionary process in small heterogeneous populations, Games, 1 (2010), 103-116. |
[66] | B. Voelkl, The evolution of generalized reciprocity in social interaction networks, Theoret. Popul. Biol., 104 (2015), 17-25. |
[67] | B. Mccowan, K. Anderson, A. Heagarty, A. Cameron, Utility of social network analysis for primate behavioral management and well-being, Appl. Anim. Behav. Sci., 109 (2008), 396-405. |
[68] | B. A. Beisner, M. E. Jackson, A. Cameron, B. Mccowan, Effects of natal male alliances on aggression and power dynamics in rhesus macaques, Am. J. Primatol., 801 (2011), 790-801. |
[69] | V. Dufour, C. Sueur, A. Whiten, The impact of moving to a novel environment on social networks, activity and wellbeing in two new world primates, Am. J. Primatol., 811 (2011), 802-811. |
[70] | M. C. Crofoot, D. I. Rubenstein, A. S. Maiya, T. Y. Berger-wolf, Aggression, grooming and group-level cooperation in white-faced capuchins (Cebus capucinus): Insights from social networks, Am. J. Primatol., 833 (2011), 821-833. |
[71] | B. Tiddi, F. Aureli, G. Schino, B. Voelkl, Social relationships between adult females and the alpha male in wild tufted capuchin monkeys, Am. J. Primatol., 73 (2011), 812-820. |
[72] | A. J. J. MacIntosh, A. Jacobs, C. Garcia, K. Shimizu, K. Mouri, M. A. Huffman, et al., Monkeys in the middle: Parasite transmission through the social network of a wild primate, PLoS One, 7 (2012), e51144. |
[73] | L. J. N. Brent, S. Semple, Social capital and physiological stress levels in free-ranging adult female rhesus macaques, Behaviour, 102 (2011), 76-83. |
[74] | P. C. Lopes, P. Block, B. König, Infection-induced behavioural changes reduce connectivity and the potential for disease spread in wild mice contact networks, Sci. Rep., 6 (2016), 31790. |
[75] | M. Dow, F. B. M. de Waal, Assignment methods for the analysis of network subgroup interactions, Soc. Netw., 11 (1989), 237-255. |
[76] | I. Matsuda, P. Zhang, L. Swedell, U. Mori, A. Tuuga, A., H. Bernard, et al., Comparisons of intraunit relationships in nonhuman primates living in multilevel social systems, Int. J. Primatol., 33 (2012), 1038-1053. |
[77] | R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, U. Alon, Network motifs: Simple building blocks of complex networks, Science, 298 (2002), 824-827. |
[78] | N. Snyder-Mackler, J. C. Beehner, T. J. Bergman, Defining higher levels in the multilevel societies of geladas (Theropithecus gelada), Int. J. Primatol., 33 (2012), 1054-1068. |
[79] | C. Sueur, O. Petit, A. de Marco, A. T. Jacobs, K. Watanabe, B. Thierry, A comparative network analysis of social style in macaques, Anim. Behav., 82 (2011), 845-852. |
[80] | B. Voelkl, R. Noë, Simulation of information propagation in real-life primate networks: Longevity, fecundity, fidelity, Behav. Ecol. Sociobiol., 64 (2010), 1449-1459. |
[81] | D. I. Rubenstein, Networks of terrestrial ungulates: linking form and function, in Animal Social Networks (eds. J. Krause, R. James, D. W. Franks, D. P. Croft), Oxford University Press, 2015, 184-196. |
[82] | E. A. Foster, D. W. Franks, L. J. Morrell, K. C. Balcomb, K. M. Parsons, A. van Ginneken, et al., Social network correlates of food availability in an endangered population of killer whales, Orcinus orca. Anim. Behav., 83 (2012), 731-736. |
[83] | R. Albert, A. L. Barabasi, Statistical mechanics of complex networks, Rev. Mod. Phys., 74 (2002), 47-97. |
[84] | M. E. J Newman, The structure and function of complex networks, SIAM Rev., 45 (2003), 167-256. |
[85] | S. Macdonald, B. Voelkl, Primate social networks, in Animal Social Networks (eds. J. Krause, R. James, D. W. Franks, D. P. Croft), Oxford University Press, 2015,123-136. |
[86] | R. R. Kao, L. Danon, D. M. Green, I. Z. Kiss, Demographic structure and pathogen dynamics on the network of livestock movements in Great Britain, Proc. R. Soc. B, 273 (2007), 1999-2007. |
[87] | R. R. Kao, D. M. Green, J. Johnson, I. Z. Kiss, Disease dynamics over very different time-scales: Foot-and-mouth disease and scrapie on the network of livestock movements in the UK, J. R. Soc. Interface, 4 (2007), 907-916. |
[88] | L. Danon, A. P. Ford, T. House, C. P. Jewell, M. J. Keeling, G. O. Roberts, et al., Networks and the epidemiology of infectious disease, Interdiscipl. Persp. Infect. Dis., 2011 (2011), 284909. |
[89] | R. M. Anderson, R. M. May, Population biology of infectious diseases: Part 1, Nature, 280 (1979), 361-367. |
[90] | M. J. E. Newman, The spread of epidemic disease on networks, Phys. Rev. E, 66 (2003), 016128. |
[91] | R. M. May, Network structure and the biology of populations', Trends Ecol. Evol., 21 (2006), 394-399. |
[92] | L. Hufnagel, D. Brockmann, T. Geisel, Forecast and control of epidemics in a globalized world, Proc. Natl. Acad. Sci. USA, 101 (2004), 7794-7799. |
[93] | L. A. Meyers, Contact network epidemiology: Bond percolation applied to infectious disease prediction and control, Bull. Am. Math. Soc., 44 (2007), 63-86. |
[94] | R. M. May, R. M Anderson, Transmission dynamics of HIV infection, Nature, 326 (1987), 137-142. |
[95] | A. S. Klovdahl, J. J. Potterat, D. E. Woodhouse, J. B. Muth, S. Q. Muth, W. W. Darrow, Social networks and infectious disease: The Colorado Springs study, Soc. Sci. Med., 38 (1994), 79-88. |
[96] | F. Liljeros, C. R. Edling, L. A. Nunes Amaral, E. Stanley, Y. Åberg, The web of human sexual contacts, Nature, 411 (2001), 907-908. |
[97] | M. A. Nowak, Evolutionary Dynamics, Harvard University Press, 2006. |
[98] | M. W. Schein, M. H. Fohrman, Social dominance relationships in a herd of dairy cattle, Brit. J. Anim. Behav., 3 (1955), 45-55. |
[99] | M. Bigras-Poulin, R. A. Thompson, M. Chriel, S. Mortensen, M. Greiner, Network analysis of Danish cattle industry trade patterns as an evaluation of risk potential for disease spread, Prevent. Vet. Med., 76 (2006), 11-39. |
[100] | L. Fiebig, T. Smieszek, J. Saurina, J. Hattendorf, J. Zinsstag, Contacts between poultry farms, their spatial dimension and their relevance for avian influenza preparedness, Geospat. Health, 4 (2009), 79-95. |
[101] | B. Martinez-Lopez, A. M. Perez, J. M. Sanchez-Vizcaino, Social network analysis. Review of general concepts and use in preventive veterinary medicine, Transb. Emerg. Dis., 56 (2009), 109-120. |
[102] | V. V. Volkova, R. Howey, N. J. Savill, M. E. J. Woolhouse, Sheep movement networks and the transmission of infectious diseases, PLoS One, 5 (2010), e11185. |
[103] | R. P. Smith, A. J. C. Cook, R. M. Christley, Descriptive and social network analysis of pig transport data recorded by quality assured pig farms in the UK, Prevent. Vet. Med., 108 (2013), 167-177. |
[104] | J. Ribeiro-Lima, E. A. Enns, B. Thompson, M. E. Craft, S. J. Wells, From network analysis to risk analysis-An approach to risk-based surveillance for bovine tuberculosis in Minnesota, US, Prevent. Vet. Med., 118 (2015), 328-340. |
[105] | H. H. Lentz, A. Koher, P. Hövel, J. Gethmann, C. Sauter-Louis, T. Selhorst, et al., Disease spread through animal movements: a static and temporal network analysis of pig trade in Germany, PLoS One, 11 (2016), 0155195. |
[106] | P. Bajardi, A. Barrat, L. Savini, V. Colizza, Optimizing surveillance for livestock disease spreading through animal movements, J. R. Soc. Interface, 9 (2012), 2814-2825. |
[107] | M. M. Mweu, G. Fournié, T. Halasa, N. Toft, S. S. Nielsen, Temporal characterisation of the network of Danish cattle movements and its implication for disease control: 2000-2009, Prevent. Vet. Med., 110 (2013), 379-387. |
[108] | S. Nickbakhsh, L. Matthews, J. E. Dent, G. T. Innocent, M. E. Arnold, S. W. Reid, et al., Implications of within-farm transmission for network dynamics: Consequences for the spread of avian influenza, Epidemics, 5 (2013), 67-76. |
[109] | B. Vidondo, B. Voelkl, Dynamic network measures reveal the impact of cattle markets and alpine summering on the risk of epidemic outbreaks in the Swiss cattle population, BMC Vet. Res. 14 (2018), 88. |
[110] | J. Krause, D. Lusseau, R. James, Animal social networks: An introduction, Behav. Ecol. Sociobiol., 63 (2009), 967-973. |
[111] | M. J. Silk, D. P. Croft, R. J. Delahay, D. J. Hodgson, M. Boots, N. Weber, et al., Using social network measures in wildlife disease ecology, epidemiology, and management, BioScience, 67 (2017), 245-257. |
[112] | M. E. Craft, Infectious disease transmission and contact networks in wildlife and livestock, Phil. Trans. R. Soc. B, 370 (2015), 20140107. |
[113] | R. H. Griffin, C. L. Nunn, Community structure and the spread of infectious disease in primate social networks, Evol. Ecol., 26 (2012), 779-800. |
[114] | C. L. Nunn, F. Jordan, C. M. McCabe, J. L. Verdolin, J. H. Fewell, Infectious disease and group size: More than just a numbers game, Phil. Trans. R. Soc. B, 370 (2015), 20140111. |
[115] | S. S. Godfrey, C. M. Bull, R. James, K. Murray, Network structure and parasite transmission in a group living lizard, the gidgee skink, Egernia stokesii, Behav. Ecol. Sociobiol., 63 (2009), 1045-1056. |
[116] | K. L. VanderWaal, E. R. Atwill, S. Hooper, K. Buckle, B. McCowan, Network structure and prevalence of Cryptosporidium in Belding's ground squirrels, Behav. Ecol. Sociobiol., 67 (2013), 1951-1959. |
[117] | T. Porphyre, M. Stevenson, R. Jackson, J. McKenzie, Original article Influence of contact heterogeneity on TB reproduction ratio R0 in a free-living brushtail possum Trichosurus vulpecula population, Vet. Res., 39 (2008), 31. |
[118] | J. Rushmore, D. Caillaud, R. J. Hall, R. M. Stumpf, L. A. Meyers, S. Altizer, Network-based vaccination improves prospects for disease control in wild chimpanzees, J. R. Soc. Interface, 11 (2014), 20140349. |
[119] | J. A. Drewe, K. T. D. Eames, J. R. Madden, G. P. Pearce, Integrating contact network structure into tuberculosis epidemiology in meerkats in South Africa: Implications for control, Prevent. Vet. Med., 101 (2011), 113-120. |
[120] | M. D. J. Blyton, S. C. Banks, R. Peakall, D. B. Lindenmayer, D. M. Gordon, Not all types of host contacts are equal when it comes to E. coli transmission, Ecol. Lett., 17 (2014), 970-978. |
[121] | C. R. Webb, Farm animal networks: Unraveling the contact structure of the British sheep population, Prevent. Vet. Med., 68 (2005), 3-17. |
[122] | F. Natale, A. Giovannini, L. Savini, D. Palma, L. Possenti, G. Fiore, et al., Network analysis of Italian cattle trade patterns and evaluation of risks for potential disease spread, Prevent. Vet. Med., 92 (2009), 341-350. |
[123] | C. Dubé, C. Ribble, D. Kelton, B. Mcnab, A Review of network analysis terminology and its application to foot-and-mouth disease modelling and policy development, Transbound. Emerg. Dis., 56 (2009), 73-85. |
[124] | H. Chen, G. Smith, S. Zhang, K. Qin, J. Wang, S. Li, et al., H5N1 virus outbreak in migratory waterfowl, Nature, 436 (2005), 191-192. |
[125] | B. J. Hoye, V. J. Munster, H. Nishiura, R. A. M. Fouchier, J. Madsen, M. Klaassen, Reconstructing an annual cycle of interaction: Natural infection and antibody dynamics to avian influenca along a migratory flyway, Oikos, 120 (2011), 748-755. |
[126] | K. R. Finn, M. J. Silk, M. A. Porter, N. Pinter-Wollman, The use of multilayer network analysis in animal behaviour, Anim. Behav., 149 (2019), 7-22. |
[127] | K. Robert, D. Garant, F. Pelletier, Keep in touch: Does spatial overlap correlate with contact rate frequency?, J. Wildl. Manag., 76 (2012), 1670-1675. |
[128] | M. L. Gilbertson, L. A. White, M. E. Craft, Trade‐offs with telemetry‐derived contact networks for infectious disease studies in wildlife, Meth. Ecol. Evol., 2020. |
[129] | S. E. Perkins, F. Cagnacci, A. Stradiotto, D. Arnoldi, P. J. Hudson, Comparison of social networks derived from ecological data: implications for inferring infectious disease dynamics, J. Anim. Ecol., 78 (2009), 1015-1022. |
[130] | J. Krause, A. D. M. Wilson, D. P. Croft, New technology facilitates the study of social networks, Trends Ecol. Evol., 26 (2011), 5-6. |
[131] | C. Rutz, Z. T. Burns, R. James, S. M. H. Ismar, J. Burt, B. Otis, et al., Automated mapping of social networks in wild birds, Curr. Biol., 22 (2012), R669-R671. |
[132] | I. Psorakis, B. Voelkl, C. J. Garroway, R. Radersma, L. M. Aplin, R. A. Crates, et al., Inferring social structure from temporal data, Behav. Ecol. Sociobiol., 69 (2015), 857-866. |
[133] | J. R. Ginsberg, T. P. Young, Measuring associations between individuals or groups in behavioural studies, Anim. Behav., 44 (1992), 377-379. |
[134] | L. Beijder, D. Fletcher, S. Brager, A method for testing association patterns of social animals, Anim. Behav., 56 (1998), 719-725. |
[135] | L. A. White, J. D. Forester, M. E. Craft, Using contact networks to explore mechanisms of parasite transmission in wildlife, Biol. Rev., 92 (2017), 389-409. |
[136] | R. K. Hamede, J. Bashford, H. McCallum, M. Jones, Contact networks in a wild Tasmanian devil (Sarcophilus harrisii) population: Using social network analysis to reveal seasonal variability in social behaviour and its implications for transmission of devil facial tumour disease, Ecol. Lett., 12 (2009), 1147-1157. |
[137] | T. C. Germann, K. Kadau, I. M. Longini, C. A. Macken, Mitigation strategies for pandemic influenza in the United States, Proc. Natl. Acad. Sci. USA, 103 (2006), 5935-5940. |
[138] | S. E. Robinson, M. G. Everett, R. M. Christley, Recent network evolution increases the potential for large epidemics in the British cattle population, J. R. Soc. Interface, 4 (2007), 669-674. |
[139] | J. C. Gibbens, C. E. Sharpe, J. W. Wilesmith, L. M. Mansley, E. Michalopoulou, J. B., et al., Descriptive epidemiology of the 2001 foot-and-mouth disease epidemic in Great Britain: The first five months, Vet. Rec., 149 (2001), 729-743. |
[140] | I. Z. Kiss, D. M. Green, R. R. Kao, The network of sheep movements within Great Britain: Network properties and their implications for infectious disease spread, J. R. Soc. Interface, 3 (2006), 669-677. |
[141] | D. M. Green, I. Z. Kiss, R. R. Kao, Modelling the initial spread of foot-and-mouth disease through animal movements, Proc. R. Soc. B, 273 (2006), 2729-2735. |
[142] | M. C.Vernon, M. J. Keeling, Representing the UK's cattle herd as static and dynamic networks, Proc. R. Soc. B, 276 (2009), 469-476. |
[143] | P. Sah, S. T. Leu, P. C. Cross, P. J. Hudson, S. Bansal, Unravelling the disease consequences and mechanisms of modular structure in animal social networks, Proc. Natl. Acad. Sci. USA, 114 (2017), 4165-4170. |
[144] | R. Pastor-Satorras, A. Vespignani, Epidemic spreading in scale-free networks, Phys. Rev. Lett., 86 (2001), 3200-3203. |
[145] | A. L. Lloyd, R. M. May, How viruses spread among computers and people, Science, 292 (2001), 1316-1317. |
[146] | D. C. Bell, J. S. Atkinson, J. W. Carlson, Centrality measures for disease transmission networks, Soc. Netw., 21 (1999), 1-21. |
[147] | M. J. Keeling, The effects of local spatial structure on epidemiological invasions, Proc. R. Soc. B, 266 (1999), 859-867. |
[148] | K. T. D. Eames, M. J. Keeling, Modeling dynamic and network heterogeneities in the spread of sexually transmitted diseases, Proc. Natl. Acad. Sci. USA, 99 (2002), 13330-13335. |
[149] | C. Buckee, L. Danon, S. Gupta, Host community structure and the maintenance of pathogen diversity, Proc. R. Soc. B, 274 (2007), 1715-1721. |
[150] | M. Salathé, J. H. Jones, Dynamics and control of diseases in networks with community structure, PLoS Comp. Biol., 6 (2010), e1000736. |
[151] | S. M. Firestone, M. P. Ward, R. M. Christley, N. K. Dhand, The importance of location in contact networks: Describing early epidemic spread using spatial social network analysis, Prevent. Vet. Med., 102 (2011), 185-195. |
[152] | J. Frössling, A. Ohlson, C. Björkman, N. Hakansson, M. Nöremark, Application of network analysis parameters in risk-based surveillance-Examples based on cattle trade data and bovine infections in Sweden, Prevent. Vet. Med., 105 (2012), 202-208. |
[153] | L. García Álvarez, C. R. Webb, M. A. Holmes, A novel field-based approach to validate the use of network models for disease spread between dairy herds, Epidemiol. Infect., 139 (2011), 1863-1874. |
[154] | R. Biek, A. G. Rodrigo, D. Holley, A. Drummond, C. R. Anderson, H. A. Ross, et al., Epidemiology, genetic diversity, and evolution of endemic feline immunodeficiency virus in a population of wild cougars, J. Virol., 77 (2003), 9578-9589. |
[155] | B. T. Grenfell, O. G. Pybus, J. R. Gog, J. L. N. Wood, J. M. Daly, J. A. Mumford, et al., Unifying the epidemiological and evolutionary dynamics of pathogens, Science, 303 (2004), 327-333. |
[156] | R. Biek, A. Drummond, M. Poss, A virus reveals population structure and recent demographic history of its carnivore host, Science, 311 (2006), 538-542. |
[157] | E. A. Archie, G. Luikart, V. O. Ezenwa, Infecting epidemiology with genetics: A new frontier in disease ecology, Trends Ecol. Evol., 24 (2008), 21-30. |
[158] | C. M. Bull, S. S. Godfrey, D. M. Gordon, Social networks and the spread of Salmonella in a sleepy lizard population, Mol. Ecol., 21 (2012), 4386-4392. |
[159] | K. L. VanderWaal, E. R. Atwill, L. A. Isbell, B. McCowan, Linking social and pathogen transmission networks using microbial genetics in giraffe (Giraffa camelopardalis), J. Anim. Ecol., 83 (2014), 406-414. |
[160] | K. L. VanderWaal, E. R. Atwill, L. A. Isbell, B. McCowan, B. Quantifying microbe transmission networks for wild and domestic ungulates in Kenya, Biol. Conserv., 169 (2014), 136-146. |
[161] |
J. S. Lee, E. W. Ruell, E. E. Boydston, L. M. Lyren, R. S. Alonso, J. L. Troyer, et al., Gene flow and pathogen transmission among bobcats (Lynx rufus) in a fragmented urban landscape, Mol. Ecol., 21 (2012), 1617-1631. doi: 10.1111/j.1365-294X.2012.05493.x
![]() |
[162] | B. Y. Reis, I. S. Kohane, K. D. Mandl, An epidemiological network model for disease outbreak detection, PLoS Med, 4 (2007), e210. |
[163] | F. Schirdewahn, V. Colizza, H. H. Lentz, A. Koher, V. Belik, P. Hövel, Surveillance for outbreak detection in livestock-trade networks, in Temporal Network Epidemiology (eds. M. Naoki, P. Holme), Springer, 2017, 215-240. |
[164] | P. Skums, A. Kirpich, P. I. Baykal, A. Zelikovsky, G. Chowell, Global transmission network of SARS-CoV-2: From outbreak to pandemic, medRxiv, 2020. |
[165] | D. Lusseau, H. Whitehead, S. Gero, Incorporating uncertainty into the study of animal social networks, Anim. Behav., 75 (2008), 1809-1815. |
[166] | R. James, D. P. Croft, J. Krause, Potential banana skins in animal social network analysis, Behav. Ecol. Sociobiol., 63 (2009), 989-997. |
[167] | B. Voelkl, C. Kasper, C. Schwab, Network measures for dyadic interactions: Stability and reliability, Am. J. Primatol., 73 (2011), 731-740. |
[168] | J. Krause, S. Krause, R. Arlinghaus, I. Psorakis, S. Roberts, C. Rutz, Reality mining of animal social systems, Trends Ecol. Evol., 28 (2013), 541-551. |
[169] | M. Berdoy, J. P. Webster, D. W. Macdonald, Fatal attraction in rats infected with Toxoplasma gondii, Proc. R. Soc. B, 267 (2000), 1591-1594. |
[170] | A. Vyas, S. Kim, N. Giacomini, J. C. Boothroyd, R. M. Sapolsky, Behavioral changes induced by Toxoplasma infection of rodents are highly specific to aversion of cat odors, Proc. Natl. Acad. Sci. USA, 104 (2007), 6442-6447. |
[171] | D. P. Croft, M. Edenbrow, S. K. Darden, I. W. Ramnarine, C. van Oosterhout, J. Cable, Effect of gyrodactylid ectoparasites on host behaviour and social network structure in guppies Poecilia reticulata, Behav. Ecol. Sociobiol., 65 (2011), 2219-2227. |
[172] | F. J. Theis, L. V. Ugelvig, C. Marr, S. Cremer, Opposing effects of allogrooming on disease transmission in ant societies, Phil Trans. R. Soc. B, 370 (2015), 20140108. |
[173] | V. O. Ezenwa, E. A. Archie, M. E. Craft, D. M. Hawley, L. B. Martin, J. Moore, et al., Host behaviour-parasite feedback: an essential link between animal behaviour and disease ecology, Proc. R. Soc. B, 283 (2016), 20153078. |
[174] | L. A. White, J. D. Forester, M. E. Craft, Dynamic, spatial models of parasite transmission in wildlife: Their structure, applications and remaining challenges, J. Anim. Ecol., 87 (2018), 559-580. |
[175] | K. Büttner, J. Salau, J., Krieter, Quality assessment of static aggregation compared to the temporal approach based on a pig trade network in Northern Germany, Prevent. Vet. Med., 129 (2016), 1-8. |
[176] | M. J. Silk, D. J., Hodgson, C. Rozins, D. P. Croft, R. J. Delahay, M. Boots, et al., Integrating social behaviour, demography and disease dynamics in network models: applications to disease management in declining wildlife populations, Phil. Trans. R. Soc. B, 374 (2019), 20180211. |
[177] | M. E. Craft, E. Volz, C. Packer, L. A. Meyers, Disease transmission in territorial populations: The small-world network of Serengeti lions, J. R. Soc. Interface, 8 (2011), 776-786. |
[178] | N. Weber, S. P. Carter, S. R. X. Dall, R. J. L. Delahay, J. L. McDonald, S. Bearhop, et al., Badger social networks correlate with tuberculosis infection, Curr. Biol., 23 (2013), R915-R916. |
[179] | K. P. Huyvaert, R. E. Russell, K. A. Patyk, M. E. Craft, P. C. Cross, M. G. Garner, et al., Challenges and opportunities developing mathematical models of shared pathogens of domestic and wild animals, Vet. Sci., 5 (2018), 92. |
[180] | S. Kraberger, N. M. Fountain-Jones, R. B. Gagne, J. Malmberg, N.G. Dannemiller, K. Logan, et al., Frequent cross-species transmissions of foamy virus between domestic and wild felids, Virus Evol., 6 (2020), vez058. |
[181] | R. K. Plowright, C. R. Parrish, H. McCallum, P. J. Hudson, A. I. Ko, A. L. Graham, et al., Pathways to zoonotic spillover, Nat. Rev. Microbiol., 15 (2017), 502. |
[182] | B. J. Coburn, B. G. Wagner, S. Blower, Modeling influenza epidemics and pandemics: insights into the future of swine flu (H1N1). BMC Med., 7 (2009), 30. |
[183] | C. M. Scoglio, C. Bosca, M. H. Riad, F. D. Sahneh, S. C. Britch, L. W. Cohnstaedt, et al., Biologically informed individual-based network model for Rift Valley fever in the US and evaluation of mitigation strategies, PloS One, 11 (2016), e0162759. |
[184] | S. K. Lau, P. C. Woo, K. S. Li, Y. Huang, H. W. Tsoi, B. H. Wong, et al., Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats, Proc. Natl. Acad. Sci. USA, 102 (2005), 14040-14045. |
[185] | C. M. Luo, N. Wang, X. L. Yang, H. Z. Liu, W. Zhang, B. Li, et al., Discovery of novel bat coronaviruses in south China that use the same receptor as Middle East respiratory syndrome coronavirus, J. Virol., 92 (2018), e00116-18. |
[186] | N. Wang, S. Y. Li, X. L. Yang, H. M. Huang, Y. J. Zhang, H. Guo, et al., Serological evidence of bat SARS-related coronavirus infection in humans, China, Virol. Sin., 33 (2018),104-107. |
[187] | L. E. Escobar, R. Moen, M. E. Craft, K. L. VanderWaal, Mapping parasite transmission risk from white-tailed deer to a declining moose population, Eur. J. Wildl. Res., 65 (2019), 60. |
[188] | P. Sah, J. Mann, S. Bansal, Disease implications of animal social network structure: A synthesis across social systems, J. Anim. Ecol., 87 (2018), 546-558. |
Methods | MobileNet | Inception V3 | Inception ResNet V2 | ResNet 50 | MobileNet V2 | Xception |
Cardboard | 0.94 | 0.95 | 0.97 | 0.91 | 0.97 | 0.96 |
Glass | 0.85 | 0.86 | 0.90 | 0.86 | 0.78 | 0.91 |
Metal | 0.86 | 0.88 | 0.91 | 0.83 | 0.86 | 0.95 |
Paper | 0.91 | 0.92 | 0.96 | 0.86 | 0.93 | 0.94 |
Plastic | 0.89 | 0.88 | 0.91 | 0.86 | 0.83 | 0.90 |
Trash | 0.52 | 0.68 | 0.68 | 0.41 | 0.32 | 0.67 |
Accuracy | 0.87 | 0.89 | 0.92 | 0.84 | 0.86 | 0.92 |
Methods | MobileNet | Inception V3 | Inception ResNet V2 | ResNet 50 | MobileNet V2 | Xception |
Parameters | 5855942 | 25478438 | 5855942 | 27263366 | 5855942 | 24537134 |
Time (in seconds) | 1031.14 | 1172.39 | 999.01 | 1230 | 999.10 | 1794.85 |
Methods | MobileNet | Inception V3 | Inception ResNet V2 | ResNet 50 | MobileNet V2 | Xception |
Cardboard | 0.94 | 0.95 | 0.97 | 0.91 | 0.97 | 0.96 |
Glass | 0.85 | 0.86 | 0.90 | 0.86 | 0.78 | 0.91 |
Metal | 0.86 | 0.88 | 0.91 | 0.83 | 0.86 | 0.95 |
Paper | 0.91 | 0.92 | 0.96 | 0.86 | 0.93 | 0.94 |
Plastic | 0.89 | 0.88 | 0.91 | 0.86 | 0.83 | 0.90 |
Trash | 0.52 | 0.68 | 0.68 | 0.41 | 0.32 | 0.67 |
Accuracy | 0.87 | 0.89 | 0.92 | 0.84 | 0.86 | 0.92 |
Methods | MobileNet | Inception V3 | Inception ResNet V2 | ResNet 50 | MobileNet V2 | Xception |
Parameters | 5855942 | 25478438 | 5855942 | 27263366 | 5855942 | 24537134 |
Time (in seconds) | 1031.14 | 1172.39 | 999.01 | 1230 | 999.10 | 1794.85 |