Citation: Yi Yang, Lirong Liu, Changcheng Xiang, Wenjie Qin. Switching dynamics analysis of forest-pest model describing effects of external periodic disturbance[J]. Mathematical Biosciences and Engineering, 2020, 17(4): 4328-4347. doi: 10.3934/mbe.2020239
[1] | S. Rinaldi, S. Muratori, Y. Kuznetsov, Multiple attractors, catastrophes and chaos in seasonally perturbed predator-prey communities, B. Math. Biol., 55 (1993), 15-35. |
[2] | G. C. Sabin, D. Summers, Chaos in a periodically forced predator-prey ecosystem model, Math. Biosci., 113 (1993), 91-113. |
[3] | S. Y. Tang, L. S. Chen, Quasiperiodic solutions and chaos in a periodically forced predator-prey model with age structure for predator, Int. J. Bifurcat. Chaos, 13 (2003), 973-980. |
[4] | S. Gakkhar, R. K. Naji, Chaos in seasonally perturbed ratio-dependent prey-predator system, Chaos Soliton. Fract., 15 (2003), 107-118. |
[5] | G. Q. Sun, Z. Jin, Q. X. Liu, B. L. Li, Rich dynamics in a predator-prey model with both noise and periodic force, Biosystems, 100 (2010), 14-22. |
[6] | T. Caraballo, R. Colucci, X. Han, Non-autonomous dynamics of a semi-kolmogorov population model with periodic forcing, Nonlinear Anal. Real., 31 (2016), 661-680. |
[7] | S. G. Liu, B. B. Lamberty, J. A. Hicke, R. Vargas, S. Q. Zhao, J. Chen, et al., Simulating the impacts of disturbances on forest carbon cycling in North America: Processes, data, models, and challenges, J. Geophys. Res. Biogeo., 116 (2011), doi:10.1029/2010JG001585. |
[8] | B. D. Cook, P. V. Bolstad, J. G. Martin, F. A. Heinsch, K. J. Davis, W. G. Wang, et al., Using light-use and production efficiency models to predict photosynthesis and net carbon exchange during forest canopy disturbance, Ecosystems, 11 (2008), 26-44. doi: 10.1007/s10021-007-9105-0 |
[9] | R. A. Fleming, J. N. Candau, R. S. Mcalpine, Landscape-scale analysis of interactions between insect defoliation and forest fire in central canada, Climatic Change, 55 (2002), 251-272. |
[10] | B. Chen-Charpentier, M. C. A. Leite, A model for coupling fire and insect outbreak in forests, Ecol. Model., 286 (2014), 26-36. |
[11] | M. L. Flint, R. V. D. Bosch, Introduction to Integrated Pest Management, Springer, 1981. |
[12] | V. M. Stern, R. F. Smith, R. V. D. Bosch, K. S. Hagen, The integration of chemical and biological control of the spotted alfalfa aphid: The integrated control concept, Hilgardia, 29 (1959), 81-101. |
[13] | J. V. Lenteren, Integrated pest management in protected crops, London: Chapman, Hall, 1995. |
[14] | S. Y. Tang, Y. N. Xiao, R. A. Cheke, Multiple attractors of Host-Parasitoid models with integrated pest management strategies: Eradication, persistence and outbreak, Theor. Popul. Biol, 73 (2008), 181-197. |
[15] | C. C. Xiang, Y. Yang, Z. Y. Xiang, W. J. Qin, Numerical analysis of discrete switching preypredator model for integrated pest management, Discrete Dyn. Nat. Soc., 2016 (2016), 1-11. |
[16] | K. B. Sun, T. H. Zhang, Y. Tian, Dynamics analysis and control optimization of a pest management predator-prey model with an integrated control strategy, Appl. Math. Comput., 292 (2017), 253-271. |
[17] | S. Y. Tang, R. A. Cheke, State-dependent impulsive models of integrated pest management (IPM)strategies and their dynamic consequences, J. Math. Biol., 50 (2005), 257-292. |
[18] | S. Y. Tang, R. A. Cheke, Models for integrated pest control and their biological implications, Math. Biosci., 215 (2008), 115-125. |
[19] | M. E. M. Meza, A. Bhaya, E. Kaszkurewicz, M. I. da Silveira Costa, Threshold policies control for predator-prey systems using a control Liapunov function approach, Theor. Popul. Biol., 67 (2005), 273-284. |
[20] | Z. Y. Xiang, S. Y. Tang, Filippov ratio-dependent prey-predator model with threshold policy control, Abstr. Appl. Anal., 2013(2013), doi:10.1155/2013/280945. |
[21] | L. R. Liu, C. C. Xiang, G. Y. Tang, Dynamics analysis of periodically forced Filippov Holling II prey-predator model with integrated pest control, IEEE Access, 2019(2019), doi: 10.1109/ACCESS.2019.2934600. |
[22] | G. Y. Tang, W. J. Qin, S. Y. Tang, Complex dynamics and switching transients in periodically forced Filippov prey-predator system, Chaos Soliton. Fract., 61 (2014), 13-23. |
[23] | W. J. Qin, X. W. Tan, X. T. Shi, J. H. Chen, X. Z. Liu, Dynamics and bifurcation analysis of a Filippov predator-prey ecosystem in a seasonally fluctuating environment, Int. J. Bifurcat. Chaos, 29 (2019), doi:10.1142/S0218127419500202. |
[24] | L. R. Liu, C. C. Xiang, G. Y. Tang, Y. Fu, Sliding dynamics of a Filippov forest-pest model with threshold policy control, Complexity, 2019 (2019), doi:10.1155/2019/2371838. |
[25] | A. F. Filippov, Equations with the right-hand side continuous in x and discontinuous in t, Differential equations with discontinuous righthand sides, Springer Netherlands, 1988. |
[26] | Y. A. Kuznetsov, S. Rinaldi, A. Gragnani, One-parameter bifurcations in planar Filippov systems, Int. J. Bifurcat. Chaos, 13 (2003), 2157-2188. |
[27] | B. Brogliato, Nonsmooth mechanics, New York: Springer Verlag, 1999. |
[28] | B. Brogliato, Impacts in mechanical systems: analysis and modelling, Springer Science and Business Media, 2000. |
[29] | K. Gupta, S. Gakkhar, The Filippov approach for predator-prey system involving mixed type of functional responses, Dynam. Part. Differ. Eq., 2016 (2016), doi:10.1007/s12591-016-0322-x. |
[30] | W. J. Qin, X. W. Tan, M. Tosato, X. Z. Liu, Threshold control strategy for a non-smooth Filippov ecosystem with group defense, Appl. Math. Comput., 362 (2019), 124532. |
[31] | X. H. Zhang, S. Y. Tang, Existence of multiple sliding segments and bifurcation analysis of Filippov prey-predator model, Appl. Math. Comput., 239 (2014), 265-284. |
[32] | H. Zhou, X. Wang, S. Y. Tang, Global dynamics of non-smooth Filippov pest-natural enemy system with constant releasing rate, Math. Biosci. Eng., 16 (2019), 7327-7361. |
[33] | F. H.Yang, W. Zhang, J. Wang, Sliding bifurcations and chaos induced by dry friction in a braking system, Chaos Soliton. Fract., 40 (2009), 1060-1075. |
[34] | V. Utkin, J. Guldner, J. Shi, Sliding mode control in electro-mechanical systems, Boca Raton, FL, USA: CRC Press, 2009. |
[35] | Y. N. Xiao, S. Y. Tang, J. H. Wu, Media impact switching surface during an infectious disease outbreak, Sci. Rep-Uk., 5 (2015), doi:10.1038/srep07838. |
[36] | A. L. Wang, Y. N. Xiao, H. P.Zhu, Dynamics of a Filippov epidemic model with limited hospital beds, Math. Biosci. Eng., 15 (2018), 739-764. |
[37] | A. L. Wang, Y. N. Xiao, R. Smith, Multiple equilibria in a non-smooth epidemic model with medical-resource constraints, B. Math. Biol., 81 (2019), 963-994. |
[38] | Y. Yang, X. F. Liao, Filippov Hindmarsh-Rose neuronal model with threshold policy control, IEEE T. Neur. Net. Lear., 30 (2018), 306-311. |
[39] | M. Guardia, S. J. Hogan, T. M. Seara, An analytical approach to codimension-2 sliding bifurcations in the dry-friction oscillator, SIAM. J. Appl. Dyn. Syst., 9 (2010), 769-798. |
[40] | J. C. Sprott, X. Wang, G. R. Chen, Coexistence of point, periodic and strange attractors, Int. J. Bifurcat. Chaos, 23 (2013), doi:10.1142/S0218127413500934. |
[41] | A. Grinsted, J. C. Moore, S. Jevrejeva, Application of the cross wavelet transform and wavelet coherence to geophysical time series, Nonlinear Proc. Geoph., 11 (2004), 561-566. |
[42] | C. Torrence, G. P. Compo, A practical guide to wavelet analysis, B. Am. Meteorol Soc., 79 (1998), 61-78. |
[43] | Q. L. Yan, S. Y. Tang, Z. Jin, Y. N. Xiao, Identifying risk factors of a (H7N9) outbreak by wavelet analysis and generalized estimating equation, Inter. J. Env. Res. Pub. Heal., 16 (2019), 1-13. |