Citation: Haijun Hu, Xupu Yuan, Lihong Huang, Chuangxia Huang. Global dynamics of an SIRS model with demographics and transfer from infectious to susceptible on heterogeneous networks[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 5729-5749. doi: 10.3934/mbe.2019286
[1] | Tyson Loudon, Stephen Pankavich . Mathematical analysis and dynamic active subspaces for a long term model of HIV. Mathematical Biosciences and Engineering, 2017, 14(3): 709-733. doi: 10.3934/mbe.2017040 |
[2] | A. M. Elaiw, N. H. AlShamrani . Stability of HTLV/HIV dual infection model with mitosis and latency. Mathematical Biosciences and Engineering, 2021, 18(2): 1077-1120. doi: 10.3934/mbe.2021059 |
[3] | Ting Guo, Zhipeng Qiu . The effects of CTL immune response on HIV infection model with potent therapy, latently infected cells and cell-to-cell viral transmission. Mathematical Biosciences and Engineering, 2019, 16(6): 6822-6841. doi: 10.3934/mbe.2019341 |
[4] | Yicang Zhou, Yiming Shao, Yuhua Ruan, Jianqing Xu, Zhien Ma, Changlin Mei, Jianhong Wu . Modeling and prediction of HIV in China: transmission rates structured by infection ages. Mathematical Biosciences and Engineering, 2008, 5(2): 403-418. doi: 10.3934/mbe.2008.5.403 |
[5] | Cameron Browne . Immune response in virus model structured by cell infection-age. Mathematical Biosciences and Engineering, 2016, 13(5): 887-909. doi: 10.3934/mbe.2016022 |
[6] | Nara Bobko, Jorge P. Zubelli . A singularly perturbed HIV model with treatment and antigenic variation. Mathematical Biosciences and Engineering, 2015, 12(1): 1-21. doi: 10.3934/mbe.2015.12.1 |
[7] | A. M. Elaiw, N. H. AlShamrani . Analysis of an HTLV/HIV dual infection model with diffusion. Mathematical Biosciences and Engineering, 2021, 18(6): 9430-9473. doi: 10.3934/mbe.2021464 |
[8] | B. M. Adams, H. T. Banks, Hee-Dae Kwon, Hien T. Tran . Dynamic Multidrug Therapies for HIV: Optimal and STI Control Approaches. Mathematical Biosciences and Engineering, 2004, 1(2): 223-241. doi: 10.3934/mbe.2004.1.223 |
[9] | Sophia Y. Rong, Ting Guo, J. Tyler Smith, Xia Wang . The role of cell-to-cell transmission in HIV infection: insights from a mathematical modeling approach. Mathematical Biosciences and Engineering, 2023, 20(7): 12093-12117. doi: 10.3934/mbe.2023538 |
[10] | Tinevimbo Shiri, Winston Garira, Senelani D. Musekwa . A two-strain HIV-1 mathematical model to assess the effects of chemotherapy on disease parameters. Mathematical Biosciences and Engineering, 2005, 2(4): 811-832. doi: 10.3934/mbe.2005.2.811 |
[1] | WHO Ebola Response Team, Ebola virus disease in west Africa-the first 9 months of the epidemic and forward projections, N. Engl. J. Med., 371 (2014), 1481–1495. |
[2] | S. Watts, SARS: a case study in emerging infections, Soc. Hist. Med., 18 (2005), 498–500. |
[3] | R. Xu and Z. Ma, Stability of a delayed SIRS epidemic model with a nonlinear incidence rate, Chaos Solitons Fractals, 41 (2009), 2319–2325. |
[4] | J. M. Epstein, Modelling to contain pandemics, Nature, 460 (2009), 687–689. |
[5] | J. Chen, An SIRS epidemic model, Appl. Math. J. Chinese Univ., 19 (2004), 101–108. |
[6] | T. Li, F. Zhang, H. Liu, et al., Threshold dynamics of an SIRS model with nonlinear incidence rate and transfer from infectious to susceptible, Appl. Math. Lett., 70 (2017), 52–57. |
[7] | C. Huang, H. Zhang, J. Cao, et al., Stability and Hopf bifurcation of a delayed prey-predator model with disease in the predator, Int. J. Bifurcat. Chaos, (2019), in press. |
[8] | M. Martcheva, Introduction to Mathematical Epidemiology, Springer, New York, 2015. |
[9] | W. O. Kermack and A.G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 115 (1927), 700–721. |
[10] | W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics. II. The problem of endemicity, Proc. R. Soc. Lond. A, 138 (1932), 55–83. |
[11] | W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics. III. Further studies of the problem of endemicity, Proc. R. Soc. Lond. A, 141 (1933), 94–122. |
[12] | H. W. Hethcote, Qualitative analyses of communicable disease models, Math. Biosci., 28 (1976), 335–356. |
[13] | S. Riley, C. Fraser and C. A. Donnelly, Transmission dynamics of the etiological agent of SARS in Hong Kong: impact of public health interventions, Science, 300 (2003), 1961–1966. |
[14] | M. Small and C. K. Tse, Small world and scale free model of transmission of SARS, Int. J. Bifurcat. Chaos, 15 (2005), 1745–1755. |
[15] | G. Zhu, G. Chen and X. Fu, Effects of active links on epidemic transmission over social networks, Phys. A, 468 (2017), 614–621. |
[16] | M. E. J. Newman, The structure and function of complex networks, SIAM Rev., 45 (2003), 167–256. |
[17] | X. Chu, Z. Zhang, J. Guan, et al., Epidemic spreading with nonlinear infectivity in weighted scale-free networks, Phys. A, 390 (2011), 471–481. |
[18] | H. Han, A. Ma and Z. Huang, An improved SIRS epidemic model on complex network, Int. Conf. Comput. Intell. Softw. Eng. IEEE, (2009), 1–5. |
[19] | R. Olinky and L. Stone, Unexpected epidemic thresholds in heterogeneous networks: The role of disease transmission, Phy. Rev. E, 70 (2004), 030902. |
[20] | R. Pastor-Satorras and A. Vespignani, Epidemic spreading in scale-free networks, Phys. Rev. Lett., 86 (2001), 3200–3213. |
[21] | L. Wang and G. Dai, Global stability of virus spreading in complex heterogeneous networks, SIAM J. Appl. Math., 68 (2008), 1495–1502. |
[22] | R. Yang, B. Wang, J. Ren, et al., Epidemic spreading on heterogeneous networks with identical infectivity, Phys. Lett. A, 364 (2007), 189–193. |
[23] | H. Zhang and X. Fu, Spreading of epidemics on scale-free networks with nonlinear infectivity, Nonlinear Anal., 70 (2009), 3273–327. |
[24] | X. Zhang, J. Wu, P. Zhao, et al., Epidemic spreading on a complex network with partial immu-nization, Soft Comput. 22 (2017), 1–9. |
[25] | C. H. Li, C. C. Tsai and S. Y. Yang, Analysis of epidemic spreading of an SIRS model in complex heterogeneous networks, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 1042–1054. |
[26] | C. Huang, J. Cao, F. Wen, et al., Stability analysis of SIR model with distributed delay on complex networks, PloS One, 11 (2016), e0158813. |
[27] | J. Huo and H. Y. Zhao, Dynamical analysis of a fractional SIR model with birth and death on heterogeneous complex networks, Phys. A, 448 (2016), 41–56. |
[28] | Z. Jin, G. Sun and H. Zhu, Epidemic models for complex networks with demographics, Math. Biosci. Eng., 11 (2014), 1295–1317. |
[29] | J. Liu, Y. Tang and Z. R. Yang, The spread of disease with birth and death on networks, J. Stat. Mech. Theory Exp., 8 (2004), P08008. |
[30] | Y. Wang, J. Cao, A. Alsaedi, et al., The spreading dynamics of sexually transmitted diseases with birth and death on heterogeneous networks, J. Stat. Mech. Theor. Exp., 2 (2017), 023502. |
[31] | P. Van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equi-libria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. |
[32] | H. Yang, The basic reproduction number obtained from Jacobian and next generation matrices-A case study of dengue transmission modelling, Biosystems, 126 (2014), 52–75. |
[33] | F. Chen, On a nonlinear nonautonomous predator-prey model with diffusion and distributed delay, J. Comput. Appl. Math., 180 (2005), 33–49. |
[34] | H. R. Thieme, Persistence under relaxed point-dissipativity (with application to an endemic model), SIAM J. Math. Anal., 24 (1993), 407–435. |
[35] | H. L. Smith and P. De Leenheer, Virus dynamics: A global analysis, SIAM J. Appl. Math., 63 (2003), 1313–1327. |
[36] | J. P. LaSalle, The stability of dynamical systems, SIAM, Philadelphia, 1976. |
[37] | R. Cohen, S. Havlin and D. Ben-Avraham, Effecient immunization strategies for computer net-works and populations, Phys. Rev. Lett., 91 (2003), 247901. |
[38] | X. Fu, M. Small, D. M. Walker, et al., Epidemic dynamics on scale-free networks with piecewise linear infectivity and immunization, Phys. Rev. E, 77 (2008), 036113. |
[39] | F. Nian and X. Wang, Efficient immunization strategies on complex networks, J. Theor. Biol., 264 (2010), 77–83. |
[40] | R. Pastor-satorras and A.Vespignani, Immunization of complex networks, Phys. Rev. E, 65 (2002), 036104. |
[41] | D. S. Callaway, M. E. J. Newman, S. H. Strogatz, et al., Network robustness and fragility: perco-lation on random graphs, Phys. Rev. Lett., 85 (2000), 5468–5471. |
[42] | A. L. Barabasi and R. Albert, Emergence of scaling in random networks, Science, 286 (1999), 509–512. |
1. | Marios M. Hadjiandreou, Raúl Conejeros, D. Ian Wilson, Planning of patient-specific drug-specific optimal HIV treatment strategies, 2009, 64, 00092509, 4024, 10.1016/j.ces.2009.06.009 | |
2. | Hassan Zarei, Ali Vahidian Kamyad, Sohrab Effati, Maximizing of Asymptomatic Stage of Fast Progressive HIV Infected Patient Using Embedding Method, 2010, 01, 2153-0653, 48, 10.4236/ica.2010.11006 | |
3. | Xinqi Xie, Junling Ma, P. van den Driessche, Backward bifurcation in within-host HIV models, 2021, 00255564, 108569, 10.1016/j.mbs.2021.108569 | |
4. | Esteban A. Hernandez-Vargas, Dhagash Mehta, Richard H. Middleton, Towards Modeling HIV Long Term Behavior, 2011, 44, 14746670, 581, 10.3182/20110828-6-IT-1002.00685 | |
5. | I Hosseini, F Mac Gabhann, Mechanistic Models Predict Efficacy of CCR5‐Deficient Stem Cell Transplants in HIV Patient Populations, 2016, 5, 2163-8306, 82, 10.1002/psp4.12059 | |
6. | Esteban A. Hernandez-Vargas, Richard H. Middleton, Modeling the three stages in HIV infection, 2013, 320, 00225193, 33, 10.1016/j.jtbi.2012.11.028 | |
7. | M. M. Hadjiandreou, R. Conejeros, D. Ian Wilson, 2012, Controlling AIDS progression in patients with rapid HIV dynamics, 978-1-4577-1096-4, 4078, 10.1109/ACC.2012.6314737 | |
8. | Esteban A. Hernandez-Vargas, Richard H. Middleton, Patrizio Colaneri, Franco Blanchini, 2010, Dynamic optimization algorithms to mitigate HIV escape, 978-1-4244-7745-6, 827, 10.1109/CDC.2010.5717251 | |
9. | Robert J. Smith, B. D. Aggarwala, Can the viral reservoir of latently infected CD4+ T cells be eradicated with antiretroviral HIV drugs?, 2009, 59, 0303-6812, 697, 10.1007/s00285-008-0245-4 | |
10. | YUEPING DONG, WANBIAO MA, GLOBAL PROPERTIES FOR A CLASS OF LATENT HIV INFECTION DYNAMICS MODEL WITH CTL IMMUNE RESPONSE, 2012, 10, 0219-6913, 1250045, 10.1142/S0219691312500452 | |
11. | Hassan Zarei, Ali Vahidian Kamyad, Sohrab Effati, Multiobjective Optimal Control of HIV Dynamics, 2010, 2010, 1024-123X, 1, 10.1155/2010/568315 | |
12. | M. Arantxa Colchero, Yanink N. Caro-Vega, Gilberto Sánchez-González, Sergio Bautista-Arredondo, A literature review of reporting standards of HIV progression models, 2012, 26, 0269-9370, 1335, 10.1097/QAD.0b013e3283533ae2 | |
13. | G. Bocharov, V. Chereshnev, I. Gainova, S. Bazhan, B. Bachmetyev, J. Argilaguet, J. Martinez, A. Meyerhans, Human Immunodeficiency Virus Infection : from Biological Observations to Mechanistic Mathematical Modelling, 2012, 7, 0973-5348, 78, 10.1051/mmnp/20127507 | |
14. | Elizabeth Gross, Brent Davis, Kenneth L. Ho, Daniel J. Bates, Heather A. Harrington, Numerical algebraic geometry for model selection and its application to the life sciences, 2016, 13, 1742-5689, 20160256, 10.1098/rsif.2016.0256 | |
15. | 2019, 9780128130520, 221, 10.1016/B978-0-12-813052-0.00023-3 | |
16. | Tyson Loudon, Stephen Pankavich, Mathematical analysis and dynamic active subspaces for a long term model of HIV, 2017, 14, 1551-0018, 709, 10.3934/mbe.2017040 | |
17. | Marcos A. Capistrán, A study of latency, reactivation and apoptosis throughout HIV pathogenesis, 2010, 52, 08957177, 1011, 10.1016/j.mcm.2010.03.022 | |
18. | Marios M. Hadjiandreou, Raul Conejeros, D. Ian Wilson, Long-term HIV dynamics subject to continuous therapy and structured treatment interruptions, 2009, 64, 00092509, 1600, 10.1016/j.ces.2008.12.010 | |
19. | 2019, 9780128130520, 105, 10.1016/B978-0-12-813052-0.00017-8 | |
20. | Ali Heydari, S.N. Balakrishnan, Optimal multi-therapeutic HIV treatment using a global optimal switching scheme, 2013, 219, 00963003, 7872, 10.1016/j.amc.2013.01.070 | |
21. | Esteban A. Hernandez-Vargas, Modeling Kick-Kill Strategies toward HIV Cure, 2017, 8, 1664-3224, 10.3389/fimmu.2017.00995 | |
22. | Emiliano Mancini, Rick Quax, Andrea De Luca, Sarah Fidler, Wolfgang Stohr, Peter M. A. Sloot, Siddappa N. Byrareddy, A study on the dynamics of temporary HIV treatment to assess the controversial outcomes of clinical trials: An in-silico approach, 2018, 13, 1932-6203, e0200892, 10.1371/journal.pone.0200892 | |
23. | 2019, 9780128130520, 129, 10.1016/B978-0-12-813052-0.00018-X | |
24. | Esteban Hernandez-Vargas, Patrizio Colaneri, Richard Middleton, Franco Blanchini, Discrete-time control for switched positive systems with application to mitigating viral escape, 2011, 21, 10498923, 1093, 10.1002/rnc.1628 | |
25. | H. Zarei, A. V. Kamyad, M. H. Farahi, Optimal Control of HIV Dynamic Using Embedding Method, 2011, 2011, 1748-670X, 1, 10.1155/2011/674318 | |
26. | Matthias Haering, Andreas Hördt, Michael Meyer-Hermann, Esteban A. Hernandez-Vargas, Computational Study to Determine When to Initiate and Alternate Therapy in HIV Infection, 2014, 2014, 2314-6133, 1, 10.1155/2014/472869 | |
27. | Esteban A. Hernandez-Vargas, Richard H. Middleton, Patrizio Colaneri, Optimal and MPC Switching Strategies for Mitigating Viral Mutation and Escape, 2011, 44, 14746670, 14857, 10.3182/20110828-6-IT-1002.01137 | |
28. | Charlotte Lew, 2022, Neural Network Modeling of HIV Acute and Chronic Phases With and Without Antiretroviral Intervention, 978-1-6654-7184-8, 47, 10.1109/TransAI54797.2022.00014 | |
29. | Qiang-hui Xu, Ji-cai Huang, Yue-ping Dong, Yasuhiro Takeuchi, A Delayed HIV Infection Model with the Homeostatic Proliferation of CD4+ T Cells, 2022, 38, 0168-9673, 441, 10.1007/s10255-022-1088-2 | |
30. | Konstantin E. Starkov, Anatoly N. Kanatnikov, Eradication Conditions of Infected Cell Populations in the 7-Order HIV Model with Viral Mutations and Related Results, 2021, 9, 2227-7390, 1862, 10.3390/math9161862 | |
31. | Huseyin Tunc, Murat Sari, Seyfullah Kotil, Machine learning aided multiscale modelling of the HIV-1 infection in the presence of NRTI therapy, 2023, 11, 2167-8359, e15033, 10.7717/peerj.15033 | |
32. | A. N. Kanatnikov, O. S. Tkacheva, Behavior of Trajectories of a Four-Dimensional Model of HIV Infection, 2023, 59, 0012-2661, 1451, 10.1134/S00122661230110022 | |
33. | Cameron Clarke, Stephen Pankavich, Three-stage modeling of HIV infection and implications for antiretroviral therapy, 2024, 88, 0303-6812, 10.1007/s00285-024-02056-1 | |
34. | A. N. Kanatnikov, O. S. Tkacheva, Behavior of Trajectories of a Four-Dimensional Model of HIV Infection, 2023, 59, 0374-0641, 1451, 10.31857/S037406412311002X | |
35. | A. M. Elaiw, E. A. Almohaimeed, A. D. Hobiny, Analysis of HHV-8/HIV-1 co-dynamics model with latency, 2024, 139, 2190-5444, 10.1140/epjp/s13360-024-05202-2 | |
36. | A. M. Elaiw, E. A. Almohaimeed, A. D. Hobiny, Stability of HHV-8 and HIV-1 co-infection model with latent reservoirs and multiple distributed delays, 2024, 9, 2473-6988, 19195, 10.3934/math.2024936 | |
37. | Yueping Dong, Jicai Huang, Yasuhiro Takeuchi, Qianghui Xu, 2024, Chapter 2, 978-981-97-7849-2, 11, 10.1007/978-981-97-7850-8_2 | |
38. | A. M. Elaiw, E. A. Almohaimeed, A. D. Hobiny, Modeling the co-infection of HTLV-2 and HIV-1 in vivo, 2024, 32, 2688-1594, 6032, 10.3934/era.2024280 | |
39. | Xia Wang, Yue Wang, Yueping Dong, Libin Rong, Dynamics of a delayed HIV infection model with cell-to-cell transmission and homeostatic proliferation, 2024, 139, 2190-5444, 10.1140/epjp/s13360-024-05845-1 | |
40. | A.M. Elaiw, E.A. Almohaimeed, A.D. Hobiny, Stability analysis of a diffusive HTLV-2 and HIV-1 co-infection model, 2025, 116, 11100168, 232, 10.1016/j.aej.2024.11.074 | |
41. | Jing Cai, Jun Zhang, Kai Wang, Zhixiang Dai, Zhiliang Hu, Yueping Dong, Zhihang Peng, Evaluating the long-term effects of combination antiretroviral therapy of HIV infection: a modeling study, 2025, 90, 0303-6812, 10.1007/s00285-025-02196-y | |
42. | Jun Zhang, Jing Cai, Yasuhiro Takeuchi, Yueping Dong, Zhihang Peng, Rich dynamics induced by homeostatic proliferation of both CD4+ T cells and macrophages in HIV infection and persistence, 2025, 2025, 2731-4235, 10.1186/s13662-025-03941-9 | |
43. | A. M. Elaiw, E. A. Almohaimeed, Within-host dynamics of HTLV-2 and HIV-1 co-infection with delay, 2025, 19, 1751-3758, 10.1080/17513758.2025.2506536 | |
44. | A. M. Elaiw, E. Dahy, H. Z. Zidan, A. A. Abdellatif, Stability of an HIV-1 abortive infection model with antibody immunity and delayed inflammatory cytokine production, 2025, 140, 2190-5444, 10.1140/epjp/s13360-025-06475-x |