Research article Special Issues

Continuous variable quantum steganography protocol based on quantum identity

  • Received: 06 January 2019 Accepted: 04 April 2019 Published: 13 May 2019
  • Based on quantum identity authentication, a novel continuous variable quantum steganography protocol is proposed in this paper. It can effectively transmit deterministic secret information in the public quantum channel by taking full advantage of entanglement properties of continuous variable GHZ state. Compared with the existing quantum steganography results, this protocol has the advantages of good imperceptibility and easy implementation. Finally, the detailed performance analysis proves that the proposed protocol has not only these advantages, but also good security and information transmission efficiency, even under eavesdropping attacks, especially to the spectroscopic noise attack.

    Citation: Zhiguo Qu, Leiming Jiang, Le Sun, Mingming Wang, Xiaojun Wang. Continuous variable quantum steganography protocol based on quantum identity[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 4182-4195. doi: 10.3934/mbe.2019208

    Related Papers:

    [1] Yicang Zhou, Zhien Ma . Global stability of a class of discrete age-structured SIS models with immigration. Mathematical Biosciences and Engineering, 2009, 6(2): 409-425. doi: 10.3934/mbe.2009.6.409
    [2] Yanxia Dang, Zhipeng Qiu, Xuezhi Li . Competitive exclusion in an infection-age structured vector-host epidemic model. Mathematical Biosciences and Engineering, 2017, 14(4): 901-931. doi: 10.3934/mbe.2017048
    [3] Zhiping Liu, Zhen Jin, Junyuan Yang, Juan Zhang . The backward bifurcation of an age-structured cholera transmission model with saturation incidence. Mathematical Biosciences and Engineering, 2022, 19(12): 12427-12447. doi: 10.3934/mbe.2022580
    [4] Toshikazu Kuniya, Hisashi Inaba . Hopf bifurcation in a chronological age-structured SIR epidemic model with age-dependent infectivity. Mathematical Biosciences and Engineering, 2023, 20(7): 13036-13060. doi: 10.3934/mbe.2023581
    [5] Azmy S. Ackleh, Keng Deng, Yixiang Wu . Competitive exclusion and coexistence in a two-strain pathogen model with diffusion. Mathematical Biosciences and Engineering, 2016, 13(1): 1-18. doi: 10.3934/mbe.2016.13.1
    [6] Churni Gupta, Necibe Tuncer, Maia Martcheva . A network immuno-epidemiological model of HIV and opioid epidemics. Mathematical Biosciences and Engineering, 2023, 20(2): 4040-4068. doi: 10.3934/mbe.2023189
    [7] Tsuyoshi Kajiwara, Toru Sasaki, Yoji Otani . Global stability of an age-structured infection model in vivo with two compartments and two routes. Mathematical Biosciences and Engineering, 2022, 19(11): 11047-11070. doi: 10.3934/mbe.2022515
    [8] Xiaodan Sun, Yanni Xiao, Zhihang Peng . Modelling HIV superinfection among men who have sex with men. Mathematical Biosciences and Engineering, 2016, 13(1): 171-191. doi: 10.3934/mbe.2016.13.171
    [9] Abba B. Gumel, Baojun Song . Existence of multiple-stable equilibria for a multi-drug-resistant model of mycobacterium tuberculosis. Mathematical Biosciences and Engineering, 2008, 5(3): 437-455. doi: 10.3934/mbe.2008.5.437
    [10] Azizeh Jabbari, Carlos Castillo-Chavez, Fereshteh Nazari, Baojun Song, Hossein Kheiri . A two-strain TB model with multiplelatent stages. Mathematical Biosciences and Engineering, 2016, 13(4): 741-785. doi: 10.3934/mbe.2016017
  • Based on quantum identity authentication, a novel continuous variable quantum steganography protocol is proposed in this paper. It can effectively transmit deterministic secret information in the public quantum channel by taking full advantage of entanglement properties of continuous variable GHZ state. Compared with the existing quantum steganography results, this protocol has the advantages of good imperceptibility and easy implementation. Finally, the detailed performance analysis proves that the proposed protocol has not only these advantages, but also good security and information transmission efficiency, even under eavesdropping attacks, especially to the spectroscopic noise attack.




    [1] C. H. Bennett and G. Brassard, Quantum cryptography: public-key distribution and coin tossing, Theor. Comput. Sci., 560 (2014), 7–11.
    [2] E. Diamanti, H. K. Lo and B. Qi, Practical challenges in quantum key distribution, NPJ Quantum Inform., 2 (2017), 1–9.
    [3] M. Tomamichel and A. Leverrier, A largely self-contained and complete security proof for quantum key distribution, Quantum, 1 (2017), 14–23.
    [4] W. J. Liu, Y. Xu, C. N. Yang, et al., An efficient and secure arbitrary n-party quantum key agreement protocol using Bell states, Int. J. Theor. Phys., 57 (2018), 195–207.
    [5] H. H. Chang, J. Heo and G. J. Jin, Quantum identity authentication with single photon, Quantum Inf. Process., 16 (2017), 236–246.
    [6] A. Tavakoli, I. Herbauts and M. ˙ zukowski, Secret sharing with a single d-level quantum system, Phys. Rev. A, 92 (2015), 1–10.
    [7] C. M. Bai, Z. H. Li and T. T. Xu, Quantum secret sharing using the d-dimensional GHZ state, Quantum Inf. Process., 16 (2017), 59–70.
    [8] X. B. Chen, X. Tang, G. Xu, et al., Cryptanalysis of secret sharing with a single d-level quantum system, Quantum Inf. Process., 17 (2018), 225–235.
    [9] W. Li, J. Chen and X. Wang, Quantum secure direct communication achieved by using multi- entanglement, Int. J. Theor. Phys., 54 (2015), 100–105.
    [10] J. Y. Hu, B. Yu and M. Y. Jing, Experimental quantum secure direct communication with single photons, Light-SCI. Appl., 5 (2016), e16144.
    [11] W. J. Liu, Z. Y. Chen, J. S. Liu, et al., Full-blind delegating private quantum computation, Comput. Mater. Con., 56 (2018), 211–223.
    [12] Z. G. Qu, S. Y. Wu, M. M. Wang, et al., Effect of quantum noise on deterministic remote state preparation of an arbitrary two-particle state via various quantum entangled channels, Quantum Inf. Process., 16 (2017), 1–25.
    [13] X. B. Chen, Y. R. Sun, G. Xu, et al., Controlled bidirectional remote preparation of three-qubit state, Quantum Inf. Process., 16 (2017), 244–254.
    [14] M. M. Wang, C. Yang and R. Mousoli, Controlled cyclic remote state preparation of arbitrary qubit states, Comput. Mater. Con., 55 (2018), 321–329.
    [15] G. Xu, X. B. Chen and J. Li, Network coding for quantum cooperative multicast, Quantum Inf. Process., 14 (2015), 4297–4307.
    [16] Z. G. Qu, J. Keeney, S. Robitzsch, et al., Multilevel pattern mining architecture for automatic network monitoring in heterogeneous wireless communication networks, China. Commun., 13 (2016), 108–116.
    [17] W. J. Liu, H. B. Wang, G. L. Yuan, et al., Multiparty quantum sealed-bid auction using single photons as message carrier, Quantum Inf. Process., 15 (2016), 869–879.
    [18] W. J. Liu, P. P. Gao, W. B. Yu, et al., Quantum Relief algorithm, Quantum Inf. Process., 17 (2018), 280–290.
    [19] J. W. Wang, T. Li, X. Y. Luo, et al., Identifying computer generated images based on quaternion central moments in color quaternion wavelet domain, IEEE T. Circ. Syst. Vid., (2018), online. DOI: 10.1109/TCSVT.2018.2867786.
    [20] L. Liu, G. M. Tang and Y. F. Sun, Quantum steganography for multi-party covert communication, Int. J. Theor. Phys., 55 (2016), 1–11.
    [21] T. Mihara, Multi-party quantum steganography, Int. J. Theor. Phys., 56 (2017), 1–8.
    [22] Z. G. Qu, S. Y. Chen, S. Ji, et al., Anti-noise bidirectional quantum steganography qrotocol with large payload, Int. J. Theor. Phys., 57 (2018), 1–25.
    [23] Z. G. Qu, T. C. Zhu and J. W. Wang, A novel quantum steganography based on Brown states, Comput. Mater. Con., 1 (2018), 47–59.
    [24] S. Wang, J. Sang and X. Song, Least significant qubit (LSQb) information hiding algorithm for quantum image, Measurement, 73 (2015), 352–359.
    [25] N. Jiang, N. Zhao and L. Wang, LSB based quantum image steganography algorithm, Int. J. Theor. Phys., 55 (2016), 1–17.
    [26] Z. G. Qu, Z. W. Cheng, W. J. Liu, et al., A novel quantum image steganography algorithm based on exploiting modification direction, Multimed. Tools. Appl., (2018), online. DOI: 10.1007/s10773- 018-3716-4
    [27] F. Grosshans and P. Grangier, Continuous variable quantum cryptography using coherent states, Phys. Rev. Lett., 88 (2002), 057902.
    [28] S. Olivares, M.G.A. Paris and R. Bonifacio, Teleportation improvement by inconclusive photon subtraction, Phys. Rev. A, 67 (2003), 032314.
    [29] J. N. Wu, S. Y. Liu, L. Y. Hu, et al., Improving entanglement of even entangled coherent states by a coherent superposition of photon subtraction and addition, J. Opt. Soc. Am. B, 32 (2015), 2299.
    [30] Y. Guo, W. Ye, H. Zhong, et al., Continuous-variable quantum key distribution with non-Gaussian quantum catalysis, Phys. Rev. A, 99 (2019), 032327.
    [31] L. P. Van and S. L. Braunstein, Multipartite entanglement for continuous variables: a quantum teleportation network, Phys. Rev. Lett., 84 (2000), 3482–3485.
    [32] H. Ma, P. Huang and W. Bao, Continuous-variable quantum identity authentication based on quantum teleportation, Quantum Inf. Process., 15 (2016), 2605–2620.
    [33] C. Berrou and A. Glavieux, Near optimum error correcting coding and decoding: turbo-codes, IEEE T. Commun., 44 (1996), 1261–1271.
    [34] R. G. Gallager, Low-density parity-check codes, IEEE Commun. Surv. Tut., 13 (2011), 3–26.
    [35] T. C. Ralph, Continuous variable quantum cryptography, Phys. Rev. A, 61 (1999), 010303.
    [36] W. P. Bowen, N. Treps, B. C. Buchler, et al., Experimental investigation of continuous-variable quantum teleportation, Phys. Rev. A, 67 (2003), 032302.
    [37] J. Z. Huang, C. Weedbrook, Z. Q. Yin, et al., Quantum hacking on continuous-variable quantum key distribution system using a wavelength attack, Phys. Rev. A, 87 (2013), 062329.
  • This article has been cited by:

    1. E. Numfor, S. Bhattacharya, S. Lenhart, M. Martcheva, S. Anita, N. Hritonenko, G. Marinoschi, A. Swierniak, Optimal Control in Coupled Within-host and Between-host Models, 2014, 9, 0973-5348, 171, 10.1051/mmnp/20149411
    2. Lin Zhao, Zhi-Cheng Wang, Shigui Ruan, Traveling wave solutions in a two-group epidemic model with latent period, 2017, 30, 0951-7715, 1287, 10.1088/1361-6544/aa59ae
    3. Rony Izhar, Jarkko Routtu, Frida Ben-Ami, Host age modulates within-host parasite competition, 2015, 11, 1744-9561, 20150131, 10.1098/rsbl.2015.0131
    4. Tufail Malik, Abba Gumel, Elamin H. Elbasha, Qualitative analysis of an age- and sex-structured vaccination model for human papillomavirus, 2013, 18, 1553-524X, 2151, 10.3934/dcdsb.2013.18.2151
    5. Robert Rowthorn, Selma Walther, The optimal treatment of an infectious disease with two strains, 2017, 74, 0303-6812, 1753, 10.1007/s00285-016-1074-5
    6. Jemal Mohammed-Awel, Eric Numfor, Ruijun Zhao, Suzanne Lenhart, A new mathematical model studying imperfect vaccination: Optimal control analysis, 2021, 500, 0022247X, 125132, 10.1016/j.jmaa.2021.125132
    7. Mohammad A. Safi, Abba B. Gumel, Elamin H. Elbasha, Qualitative analysis of an age-structured SEIR epidemic model with treatment, 2013, 219, 00963003, 10627, 10.1016/j.amc.2013.03.126
    8. S.M. Garba, M.A. Safi, A.B. Gumel, Cross-immunity-induced backward bifurcation for a model of transmission dynamics of two strains of influenza, 2013, 14, 14681218, 1384, 10.1016/j.nonrwa.2012.10.003
    9. Toshikazu Kuniya, Jinliang Wang, Hisashi Inaba, A multi-group SIR epidemic model with age structure, 2016, 21, 1531-3492, 3515, 10.3934/dcdsb.2016109
    10. Roberto Cavoretto, Simona Collino, Bianca Giardino, Ezio Venturino, A two-strain ecoepidemic competition model, 2015, 8, 1874-1738, 37, 10.1007/s12080-014-0232-x
    11. Eminugroho Ratna Sari, Fajar Adi-Kusumo, Lina Aryati, Mathematical analysis of a SIPC age-structured model of cervical cancer, 2022, 19, 1551-0018, 6013, 10.3934/mbe.2022281
    12. Chin-Lung Li, Chang-Yuan Cheng, Chun-Hsien Li, Global dynamics of two-strain epidemic model with single-strain vaccination in complex networks, 2023, 69, 14681218, 103738, 10.1016/j.nonrwa.2022.103738
    13. S.Y. Tchoumi, H. Rwezaura, J.M. Tchuenche, Dynamic of a two-strain COVID-19 model with vaccination, 2022, 39, 22113797, 105777, 10.1016/j.rinp.2022.105777
    14. Ting Cui, Peijiang Liu, Fractional transmission analysis of two strains of influenza dynamics, 2022, 40, 22113797, 105843, 10.1016/j.rinp.2022.105843
    15. Shasha Gao, Mingwang Shen, Xueying Wang, Jin Wang, Maia Martcheva, Libin Rong, A multi-strain model with asymptomatic transmission: Application to COVID-19 in the US, 2023, 565, 00225193, 111468, 10.1016/j.jtbi.2023.111468
    16. Md. Mamun-Ur-Rashid Khan, Md. Rajib Arefin, Jun Tanimoto, Time delay of the appearance of a new strain can affect vaccination behavior and disease dynamics: An evolutionary explanation, 2023, 24680427, 10.1016/j.idm.2023.06.001
    17. Yucui Wu, Zhipeng Zhang, Limei Song, Chengyi Xia, Global stability analysis of two strains epidemic model with imperfect vaccination and immunity waning in a complex network, 2024, 179, 09600779, 114414, 10.1016/j.chaos.2023.114414
    18. 彦锦 吉, Studies with Vaccination and Asymptomatic Transmission Models, 2024, 14, 2160-7583, 424, 10.12677/pm.2024.145197
    19. Mohammadi Begum Jeelani, Rahim Ud Din, Ghaliah Alhamzi, Manel Hleili, Hussam Alrabaiah, Deterministic and Stochastic Nonlinear Model for Transmission Dynamics of COVID-19 with Vaccinations Following Bayesian-Type Procedure, 2024, 12, 2227-7390, 1662, 10.3390/math12111662
    20. Taqi A.M. Shatnawi, Stephane Y. Tchoumi, Herieth Rwezaura, Khalid Dib, Jean M. Tchuenche, Mo’tassem Al-arydah, A two-strain COVID-19 co-infection model with strain 1 vaccination, 2024, 26668181, 100945, 10.1016/j.padiff.2024.100945
    21. Riya Das, Dhiraj Kumar Das, T K Kar, Analysis of a chronological age-structured epidemic model with a pair of optimal treatment controls, 2024, 99, 0031-8949, 125240, 10.1088/1402-4896/ad8e0b
    22. Xi-Chao Duan, Chenyu Zhu, Xue-Zhi Li, Eric Numfor, Maia Martcheva, Dynamics and optimal control of an SIVR immuno-epidemiological model with standard incidence, 2025, 0022247X, 129449, 10.1016/j.jmaa.2025.129449
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4522) PDF downloads(492) Cited by(1)

Article outline

Figures and Tables

Figures(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog