Loading [Contrib]/a11y/accessibility-menu.js
Research article Special Issues

Algebraic secret sharing using privacy homomorphisms for IoT-based healthcare systems

  • Received: 22 January 2019 Accepted: 04 March 2019 Published: 19 April 2019
  • Healthcare industry is one of the promising fields adopting the Internet of Things (IoT) solutions. In this paper, we study secret sharing mechanisms towards resolving privacy and security issues in IoT-based healthcare applications. In particular, we show how multiple sources are possible to share their data amongst a group of participants without revealing their own data to one another as well as the dealer. Only an authorised subset of participants is able to reconstruct the data. A collusion of fewer participants has no better chance of guessing the private data than a non-participant who has no shares at all. To realise this system, we introduce a novel research upon secret sharing in the encrypted domain. In modern healthcare industry, a patientos health record often contains data acquired from various sensor nodes. In order to protect information privacy, the data from sensor nodes is encrypted at once and shared among a number of cloud servers of medical institutions via a gateway device. The complete health record will be retrieved for diagnosis only if the number of presented shares meets the access policy. The retrieval procedure does not involve decryption and therefore the scheme is favourable in some time-sensitive circumstances such as a surgical emergency. We analyse the pros and cons of several possible solutions and develop practical secret sharing schemes for IoT- based healthcare systems.

    Citation: Ching-Chun Chang, Chang-Tsun Li. Algebraic secret sharing using privacy homomorphisms for IoT-basedhealthcare systems[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 3367-3381. doi: 10.3934/mbe.2019168

    Related Papers:

    [1] Tyson Loudon, Stephen Pankavich . Mathematical analysis and dynamic active subspaces for a long term model of HIV. Mathematical Biosciences and Engineering, 2017, 14(3): 709-733. doi: 10.3934/mbe.2017040
    [2] A. M. Elaiw, N. H. AlShamrani . Stability of HTLV/HIV dual infection model with mitosis and latency. Mathematical Biosciences and Engineering, 2021, 18(2): 1077-1120. doi: 10.3934/mbe.2021059
    [3] Ting Guo, Zhipeng Qiu . The effects of CTL immune response on HIV infection model with potent therapy, latently infected cells and cell-to-cell viral transmission. Mathematical Biosciences and Engineering, 2019, 16(6): 6822-6841. doi: 10.3934/mbe.2019341
    [4] Yicang Zhou, Yiming Shao, Yuhua Ruan, Jianqing Xu, Zhien Ma, Changlin Mei, Jianhong Wu . Modeling and prediction of HIV in China: transmission rates structured by infection ages. Mathematical Biosciences and Engineering, 2008, 5(2): 403-418. doi: 10.3934/mbe.2008.5.403
    [5] Cameron Browne . Immune response in virus model structured by cell infection-age. Mathematical Biosciences and Engineering, 2016, 13(5): 887-909. doi: 10.3934/mbe.2016022
    [6] Nara Bobko, Jorge P. Zubelli . A singularly perturbed HIV model with treatment and antigenic variation. Mathematical Biosciences and Engineering, 2015, 12(1): 1-21. doi: 10.3934/mbe.2015.12.1
    [7] A. M. Elaiw, N. H. AlShamrani . Analysis of an HTLV/HIV dual infection model with diffusion. Mathematical Biosciences and Engineering, 2021, 18(6): 9430-9473. doi: 10.3934/mbe.2021464
    [8] B. M. Adams, H. T. Banks, Hee-Dae Kwon, Hien T. Tran . Dynamic Multidrug Therapies for HIV: Optimal and STI Control Approaches. Mathematical Biosciences and Engineering, 2004, 1(2): 223-241. doi: 10.3934/mbe.2004.1.223
    [9] Sophia Y. Rong, Ting Guo, J. Tyler Smith, Xia Wang . The role of cell-to-cell transmission in HIV infection: insights from a mathematical modeling approach. Mathematical Biosciences and Engineering, 2023, 20(7): 12093-12117. doi: 10.3934/mbe.2023538
    [10] Tinevimbo Shiri, Winston Garira, Senelani D. Musekwa . A two-strain HIV-1 mathematical model to assess the effects of chemotherapy on disease parameters. Mathematical Biosciences and Engineering, 2005, 2(4): 811-832. doi: 10.3934/mbe.2005.2.811
  • Healthcare industry is one of the promising fields adopting the Internet of Things (IoT) solutions. In this paper, we study secret sharing mechanisms towards resolving privacy and security issues in IoT-based healthcare applications. In particular, we show how multiple sources are possible to share their data amongst a group of participants without revealing their own data to one another as well as the dealer. Only an authorised subset of participants is able to reconstruct the data. A collusion of fewer participants has no better chance of guessing the private data than a non-participant who has no shares at all. To realise this system, we introduce a novel research upon secret sharing in the encrypted domain. In modern healthcare industry, a patientos health record often contains data acquired from various sensor nodes. In order to protect information privacy, the data from sensor nodes is encrypted at once and shared among a number of cloud servers of medical institutions via a gateway device. The complete health record will be retrieved for diagnosis only if the number of presented shares meets the access policy. The retrieval procedure does not involve decryption and therefore the scheme is favourable in some time-sensitive circumstances such as a surgical emergency. We analyse the pros and cons of several possible solutions and develop practical secret sharing schemes for IoT- based healthcare systems.




    [1] S. Sharma, K. Chen and A. Sheth, Toward practical privacy-preserving analytics for IoT and cloud-based healthcare systems, IEEE Int. Comput., 22 (2018), 42–51.
    [2] M. Elhoseny, G. Ram´ ırez-González, O. M. Abu-Elnasr, et al., Secure medical data transmission model for IoT-based healthcare systems, IEEE Access, 6 (2018), 20596–20608.
    [3] T. Wu, F. Wu, J. M. Redouté, et al., An autonomous wireless body area network implementation towards IoT connected healthcare applications, IEEE Access, 5 (2017), 11413–11422.
    [4] F. Sebbak and F. Benhammadi, Majority-consensus fusion approach for elderly IoT-based health- care applications, Ann. Telecommun., 72 (2017), 157–171.
    [5] U. Satija, B. Ramkumar and M. S. Manikandan, Real-time signal quality-aware ECG telemetry system for IoT-based health care monitoring, IEEE Internet Things J., 4 (2017), 815–823.
    [6] G. R. Blakley, Safeguarding cryptographic keys, in Proc. AFIPS Nat. Comput. Conf. (NCC), New York, NY, USA, (1979), 313–317.
    [7] A. Shamir, How to share a secret, Commun. ACM, 22 (1979), 612–613.
    [8] M. Ito, A. Saito and T. Nishizeki, Secret sharing scheme realizing general access structure, in Proc. IEEE Global Telecommun. Conf. (GLOBECOM), Tokyo, Japan, (1987), 99–102.
    [9] J. Benaloh and J. Leichter, Generalized secret sharing and monotone functions, in Proc. Conf. Theory and Appl. of Cryptography (CRYPTO), Santa Barbara, CA, USA, (1988), 27–35.
    [10] E. F. Brickell, Some ideal secret sharing schemes, in Proc. Workshop Theory and Appl. of Cryptographic Techn. (EUROCRYPT), Houthalen, Belgium, (1989), 468–475.
    [11] E. F. Brickell and D. M. Davenport, On the classification of ideal secret sharing schemes, J. Cryptology, 4 (1991), 123–134.
    [12] A. Beimel and B. Chor., Universally ideal secret-sharing schemes, IEEE Trans. Inf. Theory, 40 (1994), 786–794.
    [13] B. Chor, S. Goldwasser and S. Micali, et al., Verifiable secret sharing and achieving simultaneity in the presence of faults, in Proc. Ann. Symp. Found. Comput. Sci. (SFCS), Portland, OR, USA, (1985), 383–395.
    [14] P. Feldman, A Practical scheme for non-interactive verifiable secret sharing, in Proc. Ann. Symp. Found. Comput. Sci. (SFCS), Los Angeles, CA, USA, (1987), 427–438.
    [15] T. Rabin and M. Ben-Or, Verifiable secret sharing and multiparty protocols with honest majority, in Proc. Ann. ACM Symp. Theory of Comput. (STOC), Seattle, WA, USA, (1989), 73–85.
    [16] M. Tompa and H. Woll, How to share a secret with cheaters, J. Cryptol., 1 (1989), 133–138.
    [17] T. P. Pedersen, Non-interactive and information-theoretic secure verifiable secret sharing, in Proc. Annl. Int. Cryptology Cof. (CRYPTO), Santa Barbara, CA, USA, (1991), 129–140.
    [18] M. Stadler, Publicly verifiable secret sharing, in Proc. Int. Conf. Theory and Appl. of Crypto- graphic Techn. (EUROCRYPT), Saragossa, Spain, (1996), 190–199.
    [19] R. Cramer, I. Damgård and U. Maurer, General secure multi-party computation from any linear secret-sharing scheme, in Proc. Int. Conf. Theory and Appl. of Cryptographic Techn. (EURO- CRYPT), Bruges, Belgium, (2000), 316–334.
    [20] M. Naor and A. Shamir, Visual cryptography, in Proc. Workshop Theory and Appl. of Crypto- graphic Techn. (EUROCRYPT), Perugia, Italy, (1994), 1–12.
    [21] C. Blundo, A. D. Santis and M. Naor, Visual cryptography for grey level images, Inf. Process. Lett., 75 (2000), 255–259.
    [22] Y. C. Hou, Visual cryptography for color images, Pattern Recognit., 36 (2003), 1619–1629. 23. Z. Zhou, G. R. Arce and G. D. Crescenzo, Halftone visual cryptography, IEEE Trans. Image Process, 15 (2006), 2441–2453.
    [23] 24. I. Ingemarsson and G. J. Simmons, A protocol to set up shared secret schemes without the assistance of a mutually trusted party, in Proc. Workshop Theory and Appl. of Cryptographic Techn. (EUROCRYPT), Aarhus, Denmark, (1994), 266–282.
    [24] 25. W. Diffie and M. Hellman, New directions in cryptography, IEEE Trans. Inf. Theory, 22 (1976), 644–654.
    [25] 26. N. Koblitz, Elliptic curve cryptosystems, Math. Comput., 48 (1987), 203–209.
    [26] 27. R. L. Rivest, L. Adleman and M. L. Dertouzos, On data banks and privacy homomorphisms, in Foundations of Secure Computation (eds. R. J. Lipton, D. P. Dobkin, and A. K. Jones), Academic Press, (1978), 169–180.
    [27] 28. R. L. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signatures and public-key cryptosystems, Commun. ACM, 21 (1978), 120–126.
    [28] 29. T. Elgamal, A public key cryptosystem and a signature scheme based on discrete logarithms, IEEE Trans. Inf. Theory, 4 (1985), 469–472.
    [29] 30. T. Okamoto and S. Uchiyama, A new public-key cryptosystem as secure as factoring, in Proc. Int. Conf. Theory and Appl. of Cryptographic Techn. (EUROCRYPT), Espoo, Finland, (1998), 308–318.
    [30] 31. I. Damgård and M. Jurik, A generalisation, a simplication and some applications of Paillier's probabilistic public-key system, in Proc. Int. Workshop Practice and Theory in Public Key Cryp- tography (PKC), Cheju Island, Korea, (2001), 119–136.
    [31] 32. P. Paillier, Public-key cryptosystems based on composite degree residuosity slasses, in Proc. Int. Conf. Theory and Appl. of Cryptographic Techn. (EUROCRYPT), Prague, Czech Republic, (1999), 223–238.
    [32] 33. C. C. Chang and C. T. Li, Secure secret sharing in the cloud, in Proc. IEEE Int. Symp. Multimedia (ISM), Taichung, Taiwan, (2017), 358–361.
    [33] 34. L. Csanky, Fast parallel matrix inversion algorithms, SIAM J. Comput., 5 (1976), 618–623.
    [34] 35. V. Strassen, Gaussian elimination is not optimal, Numerische Mathematik, 13 (1969), 354–356.
    [35] 36. D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progressions, J. Symbolic Comput., 9 (1990), 251–280.
    [36] 37. F. Le Gall, Powers of tensors and fast matrix multiplication, in Proc. Int. Symp. Symbolic and Algebraic Comput. (ISSAC), Kobe, Japan, (2014), 296–303.
  • This article has been cited by:

    1. Marios M. Hadjiandreou, Raúl Conejeros, D. Ian Wilson, Planning of patient-specific drug-specific optimal HIV treatment strategies, 2009, 64, 00092509, 4024, 10.1016/j.ces.2009.06.009
    2. Hassan Zarei, Ali Vahidian Kamyad, Sohrab Effati, Maximizing of Asymptomatic Stage of Fast Progressive HIV Infected Patient Using Embedding Method, 2010, 01, 2153-0653, 48, 10.4236/ica.2010.11006
    3. Xinqi Xie, Junling Ma, P. van den Driessche, Backward bifurcation in within-host HIV models, 2021, 00255564, 108569, 10.1016/j.mbs.2021.108569
    4. Esteban A. Hernandez-Vargas, Dhagash Mehta, Richard H. Middleton, Towards Modeling HIV Long Term Behavior, 2011, 44, 14746670, 581, 10.3182/20110828-6-IT-1002.00685
    5. I Hosseini, F Mac Gabhann, Mechanistic Models Predict Efficacy of CCR5‐Deficient Stem Cell Transplants in HIV Patient Populations, 2016, 5, 2163-8306, 82, 10.1002/psp4.12059
    6. Esteban A. Hernandez-Vargas, Richard H. Middleton, Modeling the three stages in HIV infection, 2013, 320, 00225193, 33, 10.1016/j.jtbi.2012.11.028
    7. M. M. Hadjiandreou, R. Conejeros, D. Ian Wilson, 2012, Controlling AIDS progression in patients with rapid HIV dynamics, 978-1-4577-1096-4, 4078, 10.1109/ACC.2012.6314737
    8. Esteban A. Hernandez-Vargas, Richard H. Middleton, Patrizio Colaneri, Franco Blanchini, 2010, Dynamic optimization algorithms to mitigate HIV escape, 978-1-4244-7745-6, 827, 10.1109/CDC.2010.5717251
    9. Robert J. Smith, B. D. Aggarwala, Can the viral reservoir of latently infected CD4+ T cells be eradicated with antiretroviral HIV drugs?, 2009, 59, 0303-6812, 697, 10.1007/s00285-008-0245-4
    10. YUEPING DONG, WANBIAO MA, GLOBAL PROPERTIES FOR A CLASS OF LATENT HIV INFECTION DYNAMICS MODEL WITH CTL IMMUNE RESPONSE, 2012, 10, 0219-6913, 1250045, 10.1142/S0219691312500452
    11. Hassan Zarei, Ali Vahidian Kamyad, Sohrab Effati, Multiobjective Optimal Control of HIV Dynamics, 2010, 2010, 1024-123X, 1, 10.1155/2010/568315
    12. M. Arantxa Colchero, Yanink N. Caro-Vega, Gilberto Sánchez-González, Sergio Bautista-Arredondo, A literature review of reporting standards of HIV progression models, 2012, 26, 0269-9370, 1335, 10.1097/QAD.0b013e3283533ae2
    13. G. Bocharov, V. Chereshnev, I. Gainova, S. Bazhan, B. Bachmetyev, J. Argilaguet, J. Martinez, A. Meyerhans, Human Immunodeficiency Virus Infection : from Biological Observations to Mechanistic Mathematical Modelling, 2012, 7, 0973-5348, 78, 10.1051/mmnp/20127507
    14. Elizabeth Gross, Brent Davis, Kenneth L. Ho, Daniel J. Bates, Heather A. Harrington, Numerical algebraic geometry for model selection and its application to the life sciences, 2016, 13, 1742-5689, 20160256, 10.1098/rsif.2016.0256
    15. 2019, 9780128130520, 221, 10.1016/B978-0-12-813052-0.00023-3
    16. Tyson Loudon, Stephen Pankavich, Mathematical analysis and dynamic active subspaces for a long term model of HIV, 2017, 14, 1551-0018, 709, 10.3934/mbe.2017040
    17. Marcos A. Capistrán, A study of latency, reactivation and apoptosis throughout HIV pathogenesis, 2010, 52, 08957177, 1011, 10.1016/j.mcm.2010.03.022
    18. Marios M. Hadjiandreou, Raul Conejeros, D. Ian Wilson, Long-term HIV dynamics subject to continuous therapy and structured treatment interruptions, 2009, 64, 00092509, 1600, 10.1016/j.ces.2008.12.010
    19. 2019, 9780128130520, 105, 10.1016/B978-0-12-813052-0.00017-8
    20. Ali Heydari, S.N. Balakrishnan, Optimal multi-therapeutic HIV treatment using a global optimal switching scheme, 2013, 219, 00963003, 7872, 10.1016/j.amc.2013.01.070
    21. Esteban A. Hernandez-Vargas, Modeling Kick-Kill Strategies toward HIV Cure, 2017, 8, 1664-3224, 10.3389/fimmu.2017.00995
    22. Emiliano Mancini, Rick Quax, Andrea De Luca, Sarah Fidler, Wolfgang Stohr, Peter M. A. Sloot, Siddappa N. Byrareddy, A study on the dynamics of temporary HIV treatment to assess the controversial outcomes of clinical trials: An in-silico approach, 2018, 13, 1932-6203, e0200892, 10.1371/journal.pone.0200892
    23. 2019, 9780128130520, 129, 10.1016/B978-0-12-813052-0.00018-X
    24. Esteban Hernandez-Vargas, Patrizio Colaneri, Richard Middleton, Franco Blanchini, Discrete-time control for switched positive systems with application to mitigating viral escape, 2011, 21, 10498923, 1093, 10.1002/rnc.1628
    25. H. Zarei, A. V. Kamyad, M. H. Farahi, Optimal Control of HIV Dynamic Using Embedding Method, 2011, 2011, 1748-670X, 1, 10.1155/2011/674318
    26. Matthias Haering, Andreas Hördt, Michael Meyer-Hermann, Esteban A. Hernandez-Vargas, Computational Study to Determine When to Initiate and Alternate Therapy in HIV Infection, 2014, 2014, 2314-6133, 1, 10.1155/2014/472869
    27. Esteban A. Hernandez-Vargas, Richard H. Middleton, Patrizio Colaneri, Optimal and MPC Switching Strategies for Mitigating Viral Mutation and Escape, 2011, 44, 14746670, 14857, 10.3182/20110828-6-IT-1002.01137
    28. Charlotte Lew, 2022, Neural Network Modeling of HIV Acute and Chronic Phases With and Without Antiretroviral Intervention, 978-1-6654-7184-8, 47, 10.1109/TransAI54797.2022.00014
    29. Qiang-hui Xu, Ji-cai Huang, Yue-ping Dong, Yasuhiro Takeuchi, A Delayed HIV Infection Model with the Homeostatic Proliferation of CD4+ T Cells, 2022, 38, 0168-9673, 441, 10.1007/s10255-022-1088-2
    30. Konstantin E. Starkov, Anatoly N. Kanatnikov, Eradication Conditions of Infected Cell Populations in the 7-Order HIV Model with Viral Mutations and Related Results, 2021, 9, 2227-7390, 1862, 10.3390/math9161862
    31. Huseyin Tunc, Murat Sari, Seyfullah Kotil, Machine learning aided multiscale modelling of the HIV-1 infection in the presence of NRTI therapy, 2023, 11, 2167-8359, e15033, 10.7717/peerj.15033
    32. A. N. Kanatnikov, O. S. Tkacheva, Behavior of Trajectories of a Four-Dimensional Model of HIV Infection, 2023, 59, 0012-2661, 1451, 10.1134/S00122661230110022
    33. Cameron Clarke, Stephen Pankavich, Three-stage modeling of HIV infection and implications for antiretroviral therapy, 2024, 88, 0303-6812, 10.1007/s00285-024-02056-1
    34. A. N. Kanatnikov, O. S. Tkacheva, Behavior of Trajectories of a Four-Dimensional Model of HIV Infection, 2023, 59, 0374-0641, 1451, 10.31857/S037406412311002X
    35. A. M. Elaiw, E. A. Almohaimeed, A. D. Hobiny, Analysis of HHV-8/HIV-1 co-dynamics model with latency, 2024, 139, 2190-5444, 10.1140/epjp/s13360-024-05202-2
    36. A. M. Elaiw, E. A. Almohaimeed, A. D. Hobiny, Stability of HHV-8 and HIV-1 co-infection model with latent reservoirs and multiple distributed delays, 2024, 9, 2473-6988, 19195, 10.3934/math.2024936
    37. Yueping Dong, Jicai Huang, Yasuhiro Takeuchi, Qianghui Xu, 2024, Chapter 2, 978-981-97-7849-2, 11, 10.1007/978-981-97-7850-8_2
    38. A. M. Elaiw, E. A. Almohaimeed, A. D. Hobiny, Modeling the co-infection of HTLV-2 and HIV-1 in vivo, 2024, 32, 2688-1594, 6032, 10.3934/era.2024280
    39. Xia Wang, Yue Wang, Yueping Dong, Libin Rong, Dynamics of a delayed HIV infection model with cell-to-cell transmission and homeostatic proliferation, 2024, 139, 2190-5444, 10.1140/epjp/s13360-024-05845-1
    40. A.M. Elaiw, E.A. Almohaimeed, A.D. Hobiny, Stability analysis of a diffusive HTLV-2 and HIV-1 co-infection model, 2025, 116, 11100168, 232, 10.1016/j.aej.2024.11.074
    41. Jing Cai, Jun Zhang, Kai Wang, Zhixiang Dai, Zhiliang Hu, Yueping Dong, Zhihang Peng, Evaluating the long-term effects of combination antiretroviral therapy of HIV infection: a modeling study, 2025, 90, 0303-6812, 10.1007/s00285-025-02196-y
    42. Jun Zhang, Jing Cai, Yasuhiro Takeuchi, Yueping Dong, Zhihang Peng, Rich dynamics induced by homeostatic proliferation of both CD4+ T cells and macrophages in HIV infection and persistence, 2025, 2025, 2731-4235, 10.1186/s13662-025-03941-9
    43. A. M. Elaiw, E. A. Almohaimeed, Within-host dynamics of HTLV-2 and HIV-1 co-infection with delay, 2025, 19, 1751-3758, 10.1080/17513758.2025.2506536
    44. A. M. Elaiw, E. Dahy, H. Z. Zidan, A. A. Abdellatif, Stability of an HIV-1 abortive infection model with antibody immunity and delayed inflammatory cytokine production, 2025, 140, 2190-5444, 10.1140/epjp/s13360-025-06475-x
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5533) PDF downloads(689) Cited by(28)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog