Citation: Ching-Chun Chang, Chang-Tsun Li. Algebraic secret sharing using privacy homomorphisms for IoT-basedhealthcare systems[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 3367-3381. doi: 10.3934/mbe.2019168
[1] | Tyson Loudon, Stephen Pankavich . Mathematical analysis and dynamic active subspaces for a long term model of HIV. Mathematical Biosciences and Engineering, 2017, 14(3): 709-733. doi: 10.3934/mbe.2017040 |
[2] | A. M. Elaiw, N. H. AlShamrani . Stability of HTLV/HIV dual infection model with mitosis and latency. Mathematical Biosciences and Engineering, 2021, 18(2): 1077-1120. doi: 10.3934/mbe.2021059 |
[3] | Ting Guo, Zhipeng Qiu . The effects of CTL immune response on HIV infection model with potent therapy, latently infected cells and cell-to-cell viral transmission. Mathematical Biosciences and Engineering, 2019, 16(6): 6822-6841. doi: 10.3934/mbe.2019341 |
[4] | Yicang Zhou, Yiming Shao, Yuhua Ruan, Jianqing Xu, Zhien Ma, Changlin Mei, Jianhong Wu . Modeling and prediction of HIV in China: transmission rates structured by infection ages. Mathematical Biosciences and Engineering, 2008, 5(2): 403-418. doi: 10.3934/mbe.2008.5.403 |
[5] | Cameron Browne . Immune response in virus model structured by cell infection-age. Mathematical Biosciences and Engineering, 2016, 13(5): 887-909. doi: 10.3934/mbe.2016022 |
[6] | Nara Bobko, Jorge P. Zubelli . A singularly perturbed HIV model with treatment and antigenic variation. Mathematical Biosciences and Engineering, 2015, 12(1): 1-21. doi: 10.3934/mbe.2015.12.1 |
[7] | A. M. Elaiw, N. H. AlShamrani . Analysis of an HTLV/HIV dual infection model with diffusion. Mathematical Biosciences and Engineering, 2021, 18(6): 9430-9473. doi: 10.3934/mbe.2021464 |
[8] | B. M. Adams, H. T. Banks, Hee-Dae Kwon, Hien T. Tran . Dynamic Multidrug Therapies for HIV: Optimal and STI Control Approaches. Mathematical Biosciences and Engineering, 2004, 1(2): 223-241. doi: 10.3934/mbe.2004.1.223 |
[9] | Sophia Y. Rong, Ting Guo, J. Tyler Smith, Xia Wang . The role of cell-to-cell transmission in HIV infection: insights from a mathematical modeling approach. Mathematical Biosciences and Engineering, 2023, 20(7): 12093-12117. doi: 10.3934/mbe.2023538 |
[10] | Tinevimbo Shiri, Winston Garira, Senelani D. Musekwa . A two-strain HIV-1 mathematical model to assess the effects of chemotherapy on disease parameters. Mathematical Biosciences and Engineering, 2005, 2(4): 811-832. doi: 10.3934/mbe.2005.2.811 |
[1] | S. Sharma, K. Chen and A. Sheth, Toward practical privacy-preserving analytics for IoT and cloud-based healthcare systems, IEEE Int. Comput., 22 (2018), 42–51. |
[2] | M. Elhoseny, G. Ram´ ırez-González, O. M. Abu-Elnasr, et al., Secure medical data transmission model for IoT-based healthcare systems, IEEE Access, 6 (2018), 20596–20608. |
[3] | T. Wu, F. Wu, J. M. Redouté, et al., An autonomous wireless body area network implementation towards IoT connected healthcare applications, IEEE Access, 5 (2017), 11413–11422. |
[4] | F. Sebbak and F. Benhammadi, Majority-consensus fusion approach for elderly IoT-based health- care applications, Ann. Telecommun., 72 (2017), 157–171. |
[5] | U. Satija, B. Ramkumar and M. S. Manikandan, Real-time signal quality-aware ECG telemetry system for IoT-based health care monitoring, IEEE Internet Things J., 4 (2017), 815–823. |
[6] | G. R. Blakley, Safeguarding cryptographic keys, in Proc. AFIPS Nat. Comput. Conf. (NCC), New York, NY, USA, (1979), 313–317. |
[7] | A. Shamir, How to share a secret, Commun. ACM, 22 (1979), 612–613. |
[8] | M. Ito, A. Saito and T. Nishizeki, Secret sharing scheme realizing general access structure, in Proc. IEEE Global Telecommun. Conf. (GLOBECOM), Tokyo, Japan, (1987), 99–102. |
[9] | J. Benaloh and J. Leichter, Generalized secret sharing and monotone functions, in Proc. Conf. Theory and Appl. of Cryptography (CRYPTO), Santa Barbara, CA, USA, (1988), 27–35. |
[10] | E. F. Brickell, Some ideal secret sharing schemes, in Proc. Workshop Theory and Appl. of Cryptographic Techn. (EUROCRYPT), Houthalen, Belgium, (1989), 468–475. |
[11] | E. F. Brickell and D. M. Davenport, On the classification of ideal secret sharing schemes, J. Cryptology, 4 (1991), 123–134. |
[12] | A. Beimel and B. Chor., Universally ideal secret-sharing schemes, IEEE Trans. Inf. Theory, 40 (1994), 786–794. |
[13] | B. Chor, S. Goldwasser and S. Micali, et al., Verifiable secret sharing and achieving simultaneity in the presence of faults, in Proc. Ann. Symp. Found. Comput. Sci. (SFCS), Portland, OR, USA, (1985), 383–395. |
[14] | P. Feldman, A Practical scheme for non-interactive verifiable secret sharing, in Proc. Ann. Symp. Found. Comput. Sci. (SFCS), Los Angeles, CA, USA, (1987), 427–438. |
[15] | T. Rabin and M. Ben-Or, Verifiable secret sharing and multiparty protocols with honest majority, in Proc. Ann. ACM Symp. Theory of Comput. (STOC), Seattle, WA, USA, (1989), 73–85. |
[16] | M. Tompa and H. Woll, How to share a secret with cheaters, J. Cryptol., 1 (1989), 133–138. |
[17] | T. P. Pedersen, Non-interactive and information-theoretic secure verifiable secret sharing, in Proc. Annl. Int. Cryptology Cof. (CRYPTO), Santa Barbara, CA, USA, (1991), 129–140. |
[18] | M. Stadler, Publicly verifiable secret sharing, in Proc. Int. Conf. Theory and Appl. of Crypto- graphic Techn. (EUROCRYPT), Saragossa, Spain, (1996), 190–199. |
[19] | R. Cramer, I. Damgård and U. Maurer, General secure multi-party computation from any linear secret-sharing scheme, in Proc. Int. Conf. Theory and Appl. of Cryptographic Techn. (EURO- CRYPT), Bruges, Belgium, (2000), 316–334. |
[20] | M. Naor and A. Shamir, Visual cryptography, in Proc. Workshop Theory and Appl. of Crypto- graphic Techn. (EUROCRYPT), Perugia, Italy, (1994), 1–12. |
[21] | C. Blundo, A. D. Santis and M. Naor, Visual cryptography for grey level images, Inf. Process. Lett., 75 (2000), 255–259. |
[22] | Y. C. Hou, Visual cryptography for color images, Pattern Recognit., 36 (2003), 1619–1629. 23. Z. Zhou, G. R. Arce and G. D. Crescenzo, Halftone visual cryptography, IEEE Trans. Image Process, 15 (2006), 2441–2453. |
[23] | 24. I. Ingemarsson and G. J. Simmons, A protocol to set up shared secret schemes without the assistance of a mutually trusted party, in Proc. Workshop Theory and Appl. of Cryptographic Techn. (EUROCRYPT), Aarhus, Denmark, (1994), 266–282. |
[24] | 25. W. Diffie and M. Hellman, New directions in cryptography, IEEE Trans. Inf. Theory, 22 (1976), 644–654. |
[25] | 26. N. Koblitz, Elliptic curve cryptosystems, Math. Comput., 48 (1987), 203–209. |
[26] | 27. R. L. Rivest, L. Adleman and M. L. Dertouzos, On data banks and privacy homomorphisms, in Foundations of Secure Computation (eds. R. J. Lipton, D. P. Dobkin, and A. K. Jones), Academic Press, (1978), 169–180. |
[27] | 28. R. L. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signatures and public-key cryptosystems, Commun. ACM, 21 (1978), 120–126. |
[28] | 29. T. Elgamal, A public key cryptosystem and a signature scheme based on discrete logarithms, IEEE Trans. Inf. Theory, 4 (1985), 469–472. |
[29] | 30. T. Okamoto and S. Uchiyama, A new public-key cryptosystem as secure as factoring, in Proc. Int. Conf. Theory and Appl. of Cryptographic Techn. (EUROCRYPT), Espoo, Finland, (1998), 308–318. |
[30] | 31. I. Damgård and M. Jurik, A generalisation, a simplication and some applications of Paillier's probabilistic public-key system, in Proc. Int. Workshop Practice and Theory in Public Key Cryp- tography (PKC), Cheju Island, Korea, (2001), 119–136. |
[31] | 32. P. Paillier, Public-key cryptosystems based on composite degree residuosity slasses, in Proc. Int. Conf. Theory and Appl. of Cryptographic Techn. (EUROCRYPT), Prague, Czech Republic, (1999), 223–238. |
[32] | 33. C. C. Chang and C. T. Li, Secure secret sharing in the cloud, in Proc. IEEE Int. Symp. Multimedia (ISM), Taichung, Taiwan, (2017), 358–361. |
[33] | 34. L. Csanky, Fast parallel matrix inversion algorithms, SIAM J. Comput., 5 (1976), 618–623. |
[34] | 35. V. Strassen, Gaussian elimination is not optimal, Numerische Mathematik, 13 (1969), 354–356. |
[35] | 36. D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progressions, J. Symbolic Comput., 9 (1990), 251–280. |
[36] | 37. F. Le Gall, Powers of tensors and fast matrix multiplication, in Proc. Int. Symp. Symbolic and Algebraic Comput. (ISSAC), Kobe, Japan, (2014), 296–303. |
1. | Marios M. Hadjiandreou, Raúl Conejeros, D. Ian Wilson, Planning of patient-specific drug-specific optimal HIV treatment strategies, 2009, 64, 00092509, 4024, 10.1016/j.ces.2009.06.009 | |
2. | Hassan Zarei, Ali Vahidian Kamyad, Sohrab Effati, Maximizing of Asymptomatic Stage of Fast Progressive HIV Infected Patient Using Embedding Method, 2010, 01, 2153-0653, 48, 10.4236/ica.2010.11006 | |
3. | Xinqi Xie, Junling Ma, P. van den Driessche, Backward bifurcation in within-host HIV models, 2021, 00255564, 108569, 10.1016/j.mbs.2021.108569 | |
4. | Esteban A. Hernandez-Vargas, Dhagash Mehta, Richard H. Middleton, Towards Modeling HIV Long Term Behavior, 2011, 44, 14746670, 581, 10.3182/20110828-6-IT-1002.00685 | |
5. | I Hosseini, F Mac Gabhann, Mechanistic Models Predict Efficacy of CCR5‐Deficient Stem Cell Transplants in HIV Patient Populations, 2016, 5, 2163-8306, 82, 10.1002/psp4.12059 | |
6. | Esteban A. Hernandez-Vargas, Richard H. Middleton, Modeling the three stages in HIV infection, 2013, 320, 00225193, 33, 10.1016/j.jtbi.2012.11.028 | |
7. | M. M. Hadjiandreou, R. Conejeros, D. Ian Wilson, 2012, Controlling AIDS progression in patients with rapid HIV dynamics, 978-1-4577-1096-4, 4078, 10.1109/ACC.2012.6314737 | |
8. | Esteban A. Hernandez-Vargas, Richard H. Middleton, Patrizio Colaneri, Franco Blanchini, 2010, Dynamic optimization algorithms to mitigate HIV escape, 978-1-4244-7745-6, 827, 10.1109/CDC.2010.5717251 | |
9. | Robert J. Smith, B. D. Aggarwala, Can the viral reservoir of latently infected CD4+ T cells be eradicated with antiretroviral HIV drugs?, 2009, 59, 0303-6812, 697, 10.1007/s00285-008-0245-4 | |
10. | YUEPING DONG, WANBIAO MA, GLOBAL PROPERTIES FOR A CLASS OF LATENT HIV INFECTION DYNAMICS MODEL WITH CTL IMMUNE RESPONSE, 2012, 10, 0219-6913, 1250045, 10.1142/S0219691312500452 | |
11. | Hassan Zarei, Ali Vahidian Kamyad, Sohrab Effati, Multiobjective Optimal Control of HIV Dynamics, 2010, 2010, 1024-123X, 1, 10.1155/2010/568315 | |
12. | M. Arantxa Colchero, Yanink N. Caro-Vega, Gilberto Sánchez-González, Sergio Bautista-Arredondo, A literature review of reporting standards of HIV progression models, 2012, 26, 0269-9370, 1335, 10.1097/QAD.0b013e3283533ae2 | |
13. | G. Bocharov, V. Chereshnev, I. Gainova, S. Bazhan, B. Bachmetyev, J. Argilaguet, J. Martinez, A. Meyerhans, Human Immunodeficiency Virus Infection : from Biological Observations to Mechanistic Mathematical Modelling, 2012, 7, 0973-5348, 78, 10.1051/mmnp/20127507 | |
14. | Elizabeth Gross, Brent Davis, Kenneth L. Ho, Daniel J. Bates, Heather A. Harrington, Numerical algebraic geometry for model selection and its application to the life sciences, 2016, 13, 1742-5689, 20160256, 10.1098/rsif.2016.0256 | |
15. | 2019, 9780128130520, 221, 10.1016/B978-0-12-813052-0.00023-3 | |
16. | Tyson Loudon, Stephen Pankavich, Mathematical analysis and dynamic active subspaces for a long term model of HIV, 2017, 14, 1551-0018, 709, 10.3934/mbe.2017040 | |
17. | Marcos A. Capistrán, A study of latency, reactivation and apoptosis throughout HIV pathogenesis, 2010, 52, 08957177, 1011, 10.1016/j.mcm.2010.03.022 | |
18. | Marios M. Hadjiandreou, Raul Conejeros, D. Ian Wilson, Long-term HIV dynamics subject to continuous therapy and structured treatment interruptions, 2009, 64, 00092509, 1600, 10.1016/j.ces.2008.12.010 | |
19. | 2019, 9780128130520, 105, 10.1016/B978-0-12-813052-0.00017-8 | |
20. | Ali Heydari, S.N. Balakrishnan, Optimal multi-therapeutic HIV treatment using a global optimal switching scheme, 2013, 219, 00963003, 7872, 10.1016/j.amc.2013.01.070 | |
21. | Esteban A. Hernandez-Vargas, Modeling Kick-Kill Strategies toward HIV Cure, 2017, 8, 1664-3224, 10.3389/fimmu.2017.00995 | |
22. | Emiliano Mancini, Rick Quax, Andrea De Luca, Sarah Fidler, Wolfgang Stohr, Peter M. A. Sloot, Siddappa N. Byrareddy, A study on the dynamics of temporary HIV treatment to assess the controversial outcomes of clinical trials: An in-silico approach, 2018, 13, 1932-6203, e0200892, 10.1371/journal.pone.0200892 | |
23. | 2019, 9780128130520, 129, 10.1016/B978-0-12-813052-0.00018-X | |
24. | Esteban Hernandez-Vargas, Patrizio Colaneri, Richard Middleton, Franco Blanchini, Discrete-time control for switched positive systems with application to mitigating viral escape, 2011, 21, 10498923, 1093, 10.1002/rnc.1628 | |
25. | H. Zarei, A. V. Kamyad, M. H. Farahi, Optimal Control of HIV Dynamic Using Embedding Method, 2011, 2011, 1748-670X, 1, 10.1155/2011/674318 | |
26. | Matthias Haering, Andreas Hördt, Michael Meyer-Hermann, Esteban A. Hernandez-Vargas, Computational Study to Determine When to Initiate and Alternate Therapy in HIV Infection, 2014, 2014, 2314-6133, 1, 10.1155/2014/472869 | |
27. | Esteban A. Hernandez-Vargas, Richard H. Middleton, Patrizio Colaneri, Optimal and MPC Switching Strategies for Mitigating Viral Mutation and Escape, 2011, 44, 14746670, 14857, 10.3182/20110828-6-IT-1002.01137 | |
28. | Charlotte Lew, 2022, Neural Network Modeling of HIV Acute and Chronic Phases With and Without Antiretroviral Intervention, 978-1-6654-7184-8, 47, 10.1109/TransAI54797.2022.00014 | |
29. | Qiang-hui Xu, Ji-cai Huang, Yue-ping Dong, Yasuhiro Takeuchi, A Delayed HIV Infection Model with the Homeostatic Proliferation of CD4+ T Cells, 2022, 38, 0168-9673, 441, 10.1007/s10255-022-1088-2 | |
30. | Konstantin E. Starkov, Anatoly N. Kanatnikov, Eradication Conditions of Infected Cell Populations in the 7-Order HIV Model with Viral Mutations and Related Results, 2021, 9, 2227-7390, 1862, 10.3390/math9161862 | |
31. | Huseyin Tunc, Murat Sari, Seyfullah Kotil, Machine learning aided multiscale modelling of the HIV-1 infection in the presence of NRTI therapy, 2023, 11, 2167-8359, e15033, 10.7717/peerj.15033 | |
32. | A. N. Kanatnikov, O. S. Tkacheva, Behavior of Trajectories of a Four-Dimensional Model of HIV Infection, 2023, 59, 0012-2661, 1451, 10.1134/S00122661230110022 | |
33. | Cameron Clarke, Stephen Pankavich, Three-stage modeling of HIV infection and implications for antiretroviral therapy, 2024, 88, 0303-6812, 10.1007/s00285-024-02056-1 | |
34. | A. N. Kanatnikov, O. S. Tkacheva, Behavior of Trajectories of a Four-Dimensional Model of HIV Infection, 2023, 59, 0374-0641, 1451, 10.31857/S037406412311002X | |
35. | A. M. Elaiw, E. A. Almohaimeed, A. D. Hobiny, Analysis of HHV-8/HIV-1 co-dynamics model with latency, 2024, 139, 2190-5444, 10.1140/epjp/s13360-024-05202-2 | |
36. | A. M. Elaiw, E. A. Almohaimeed, A. D. Hobiny, Stability of HHV-8 and HIV-1 co-infection model with latent reservoirs and multiple distributed delays, 2024, 9, 2473-6988, 19195, 10.3934/math.2024936 | |
37. | Yueping Dong, Jicai Huang, Yasuhiro Takeuchi, Qianghui Xu, 2024, Chapter 2, 978-981-97-7849-2, 11, 10.1007/978-981-97-7850-8_2 | |
38. | A. M. Elaiw, E. A. Almohaimeed, A. D. Hobiny, Modeling the co-infection of HTLV-2 and HIV-1 in vivo, 2024, 32, 2688-1594, 6032, 10.3934/era.2024280 | |
39. | Xia Wang, Yue Wang, Yueping Dong, Libin Rong, Dynamics of a delayed HIV infection model with cell-to-cell transmission and homeostatic proliferation, 2024, 139, 2190-5444, 10.1140/epjp/s13360-024-05845-1 | |
40. | A.M. Elaiw, E.A. Almohaimeed, A.D. Hobiny, Stability analysis of a diffusive HTLV-2 and HIV-1 co-infection model, 2025, 116, 11100168, 232, 10.1016/j.aej.2024.11.074 | |
41. | Jing Cai, Jun Zhang, Kai Wang, Zhixiang Dai, Zhiliang Hu, Yueping Dong, Zhihang Peng, Evaluating the long-term effects of combination antiretroviral therapy of HIV infection: a modeling study, 2025, 90, 0303-6812, 10.1007/s00285-025-02196-y | |
42. | Jun Zhang, Jing Cai, Yasuhiro Takeuchi, Yueping Dong, Zhihang Peng, Rich dynamics induced by homeostatic proliferation of both CD4+ T cells and macrophages in HIV infection and persistence, 2025, 2025, 2731-4235, 10.1186/s13662-025-03941-9 | |
43. | A. M. Elaiw, E. A. Almohaimeed, Within-host dynamics of HTLV-2 and HIV-1 co-infection with delay, 2025, 19, 1751-3758, 10.1080/17513758.2025.2506536 | |
44. | A. M. Elaiw, E. Dahy, H. Z. Zidan, A. A. Abdellatif, Stability of an HIV-1 abortive infection model with antibody immunity and delayed inflammatory cytokine production, 2025, 140, 2190-5444, 10.1140/epjp/s13360-025-06475-x |