Citation: Markus Thäter, Kurt Chudej, Hans Josef Pesch. Optimal vaccination strategies for an SEIR model of infectious diseases with logistic growth[J]. Mathematical Biosciences and Engineering, 2018, 15(2): 485-505. doi: 10.3934/mbe.2018022
[1] | Lukáš Pichl, Taisei Kaizoji . Volatility Analysis of Bitcoin Price Time Series. Quantitative Finance and Economics, 2017, 1(4): 474-485. doi: 10.3934/QFE.2017.4.474 |
[2] | Andres Fernandez, Norman R. Swanson . Further Evidence on the Usefulness of Real-Time Datasets for Economic Forecasting. Quantitative Finance and Economics, 2017, 1(1): 2-25. doi: 10.3934/QFE.2017.1.2 |
[3] | Samuel Asante Gyamerah . Modelling the volatility of Bitcoin returns using GARCH models. Quantitative Finance and Economics, 2019, 3(4): 739-753. doi: 10.3934/QFE.2019.4.739 |
[4] | Guillermo Peña . Interest rates affect public expenditure growth. Quantitative Finance and Economics, 2023, 7(4): 622-645. doi: 10.3934/QFE.2023030 |
[5] | Abdul Haque, Huma Fatima, Ammar Abid, Muhammad Ali Jibran Qamar . Impact of firm-level uncertainty on earnings management and role of accounting conservatism. Quantitative Finance and Economics, 2019, 3(4): 772-794. doi: 10.3934/QFE.2019.4.772 |
[6] | Arifenur Güngör, Hüseyin Taştan . On macroeconomic determinants of co-movements among international stock markets: evidence from DCC-MIDAS approach. Quantitative Finance and Economics, 2021, 5(1): 19-39. doi: 10.3934/QFE.2021002 |
[7] | Cemile Özgür, Vedat Sarıkovanlık . An application of Regular Vine copula in portfolio risk forecasting: evidence from Istanbul stock exchange. Quantitative Finance and Economics, 2021, 5(3): 452-470. doi: 10.3934/QFE.2021020 |
[8] | Md Qamruzzaman, Jianguo Wei . Do financial inclusion, stock market development attract foreign capital flows in developing economy: a panel data investigation. Quantitative Finance and Economics, 2019, 3(1): 88-108. doi: 10.3934/QFE.2019.1.88 |
[9] | David Melkuev, Danqiao Guo, Tony S. Wirjanto . Applications of random-matrix theory and nonparametric change-point analysis to three notable systemic crises. Quantitative Finance and Economics, 2018, 2(2): 413-467. doi: 10.3934/QFE.2018.2.413 |
[10] | Fredrik Hobbelhagen, Ioannis Diamantis . A comparative study of symbolic aggregate approximation and topological data analysis. Quantitative Finance and Economics, 2024, 8(4): 705-732. doi: 10.3934/QFE.2024027 |
The Caginalp phase-field system
∂u∂t−Δu+f(u)=θ, | (1.1) |
∂θ∂t−Δθ=−∂u∂t, | (1.2) |
has been introduced in [1] in order to describe the phase transition phenomena in certain class of material. In this context,
ψ=∫Ω(12|∇u|2+F(u)−uθ−12θ2)dx, | (1.3) |
where
H=u+θ. | (1.4) |
Then, the evolution equation for the order parameter
∂u∂t=−δuψ, | (1.5) |
where
∂H∂t=−divq, | (1.6) |
where
q=−∇θ, | (1.7) |
we obtain (1.2). Now, a well-known side effect of the Fourier heat law is the infinite speed of propagation of thermal disturbances, deemed physically unreasonable and thus called paradox of heat conduction (see, for example, [9]). In order to account for more realistic features, several variations of (1.7), based, for example, on the Maxwell-Cattaneo law or recent laws from thermomechanics, have been proposed in the context of the Caginalp phase-field system (see, for example, [19], [20], [21], [23], [24], [25], [26], [27], [28], [30], [31], [35], [36], [37], [38], [44], [45] and [46]).
A different approach to heat conduction was proposed in the Sixties (see, [47], [48] and [49]), where it was observed that two temperatures are involved in the definition of the entropy: the conductive temperature
θ=φ−Δφ. | (1.8) |
Our aim in this paper is to study a generalization of the Caginalp phase-field system based on this two temperatures theory and the usual Fourier law with a nonlinear coupling.
The purpose of our study is the following initial and boundary value problem
∂u∂t−Δu+f(u)=g(u)(φ−Δφ), | (1.9) |
∂φ∂t−Δ∂φ∂t−Δφ=−g(u)∂u∂t, | (1.10) |
u=φ=0on∂Ω, | (1.11) |
u|t=0=u0, φ|t=0=φ0. | (1.12) |
The paper is organized as follows. In Section 2, we give the derivation of the model. The Section 3 states existence, regularity and uniqueness results. In Section 4, we address the question of dissipativity properties of the system. The last section, analyzes the spatial behavior of solutions in a semi-infinite cylinder, assuming their existence.
Thoughout this paper, the same letters
In our case, to obtain equations (1.9) and (1.10), the total free energy reads in terms of the conductive temperature
ψ(u,θ)=∫Ω(12|∇u|2+F(u)−G(u)θ−12θ2)dx, | (2.1) |
where
H=G(u)+θ=G(u)+φ−Δφ, | (2.2) |
which yields thanks to (1.6), the energy equation,
∂φ∂t−Δ∂φ∂t+divq=−g(u)∂u∂t. | (2.3) |
Considering the usual Fourier law (
Remark 2.1. We can note that we still have an infinite speed of propagation here.
Before stating the existence result, we make some assumptions on nonlinearities
|G(s)|2≤c1F(s)+c2,c0,c1,c2≥0, | (3.1) |
|g(s)s|≤c3(|G(s)|2+1),c3≥0, | (3.2) |
c4sk+2−c5≤F(s)≤f(s)s+c0≤c6sk+2−c7,c4,c6>0,c5,c7≥0, | (3.3) |
|g(s)|≤c8(|s|+1),|g′(s)|≤c9c8,c9≥0, | (3.4) |
|f′(s)|≤c10(|s|k+1),c10≥0, | (3.5) |
where
Theorem 3.1. We assume that (3.1)-(3.4) hold true. For all initial data
Proof. The proof is based on the Galerkin scheme. Here, we just make formally computations to get a priori estimates, having in mind that these estimates can be rigourously justified using the Galerkin scheme see, for example, [10], [11] and [40] for details.
Multiplying (1.9) by
12ddt(‖∇u‖2+2∫ΩF(u)dx)+‖∂u∂t‖2=∫Ωg(u)∂u∂t(φ−Δφ)dx. | (3.6) |
Multiplying (1.10) by
12ddt(‖φ‖2+2‖∇φ‖2+‖Δφ‖2)+‖∇φ‖2+‖Δφ‖2=−∫Ωg(u)∂u∂t(φ−Δφ)dx. | (3.7) |
Now, summing (3.6) and (3.7), we are led to,
ddt(‖∇u‖2+2∫ΩF(u)dx+‖φ‖2+2‖∇φ‖2+‖Δφ‖2)+2(‖∂u∂t‖2+‖∇φ‖2+‖Δφ‖2)=0. | (3.8) |
Multiplying (1.9) by
12ddt‖u‖2+‖∇u‖2+∫Ωf(u)udx=∫Ωg(u)u(φ−Δφ)dx. | (3.9) |
Using (3.2)-(3.3), (3.9) becomes
12ddt‖u‖2+‖∇u‖2+c∫ΩF(u)dx≤c′∫Ω|G(u)|2dx+12(‖φ‖2+‖Δφ‖2)+c″. | (3.10) |
Adding (3.8) and (3.10), one has
dE1dt+2(‖∇u‖2+c∫ΩF(u)dx+‖∂u∂t‖2+‖∇φ‖2)+‖Δφ‖2≤c′∫Ω|G(u)|2dx+‖φ‖2+c″, | (3.11) |
where
E1=‖u‖2+‖∇u‖2+2∫ΩF(u)dx+‖φ‖2+2‖∇φ‖2+‖Δφ‖2 | (3.12) |
enjoys
E1≤c(‖u‖2H1(Ω)+‖u‖k+2k+2+‖φ‖2H2(Ω))−c′ | (3.13) |
and
E1≤c″(‖u‖2H1(Ω)+‖u‖k+2k+2+‖φ‖2H2(Ω))−c‴. | (3.14) |
Multiplying now (1.10) by
12ddt‖∇φ‖2+‖∂φ∂t‖2+‖∇∂φ∂t‖2=−∫Ωg(u)∂u∂t∂φ∂tdx. | (3.15) |
Taking into account (3.4) and using Hölder's inequality, we get
12ddt‖∇φ‖2+12‖∂φ∂t‖2+‖∇∂φ∂t‖2≤c(‖∇u‖2+1)‖∂u∂t‖2 | (3.16) |
and then, summing (3.11) and (3.16), we have
dE2dt+2(‖∇u‖2+c∫ΩF(u)dx+‖∂u∂t‖2+‖∇φ‖2+12‖Δφ‖2+12‖∂φ∂t‖2+‖∇∂φ∂t‖2)≤c∫Ω|G(u)|2dx+‖φ‖2+c″(‖∇u‖2+1)‖∂u∂t‖2+c‴, | (3.17) |
where
E2=E1+‖∇φ‖2 | (3.18) |
satisfies similar estimates as
We deduce from (3.1) and (3.17)
dE2dt+c(‖∂φ∂t‖2+‖∇∂φ∂t‖2)≤c′E2+c″, | (3.19) |
which achieve the proof.
For more regularity on solutions, we make following additional assumptions:
f(0)=0andf′(s)≥−c,c≥0. | (3.20) |
We have:
Theorem 3.2. Under assumptions of Theorem 3.1 and assuming that (3.20) is satisfied. For every initial data
Proof. As above proof, we focus on a priori estimates.
We multiply (1.10) by
12ddt‖∇φ‖2+‖∇∂φ∂t‖2+‖Δ∂φ∂t‖2=∫Ωg(u)∂u∂tΔ∂φ∂tdx. | (3.21) |
Thanks to (3.4) and Hölder's inequality:
∫Ωg(u)∂u∂tΔ∂φ∂tdx≤c∫Ω(|u|+1)|∂u∂t||Δ∂φ∂t|dx≤c(‖∇u‖2+1)‖∂u∂t‖2+12‖Δ∂φ∂t‖2 | (3.22) |
and then,
12ddt‖∇φ‖2+‖∇∂φ∂t‖2+12‖Δ∂φ∂t‖2≤c(‖∇u‖2+1)‖∂u∂t‖2. | (3.23) |
Differentiating (1.9) with respect to time, we get
∂2u∂t2−Δ∂u∂t+f′(u)∂u∂t=g′(u)∂u∂t(φ−Δφ)+g(u)(∂φ∂t−Δ∂φ∂t). | (3.24) |
Multiplying (3.24) by
12ddt‖∂u∂t‖2+‖∇∂u∂t‖2+∫Ωf′(u)|∂u∂t|2dx=∫Ωg′(u)|∂u∂t|2(φ−Δφ)dx+∫Ωg(u)∂u∂t(∂φ∂t−Δ∂φ∂t)dx. | (3.25) |
Using (1.10), we write,
∫Ωg(u)∂u∂t(∂φ∂t−Δ∂φ∂t)dx=∫Ωg(u)∂u∂t(−g(u)∂u∂t+Δφ)dx=−∫Ω|g(u)∂u∂t|2dx+∫Ωg(u)∂u∂tΔφdx. | (3.26) |
Owing to (3.26), (3.25) reads
12ddt‖∂u∂t‖2+‖∇∂u∂t‖2+∫Ωf′(u)|∂u∂t|2dx=∫Ωg′(u)|∂u∂t|2(φ−Δφ)dx+∫Ωg(u)∂u∂tΔφdx−∫Ω|g(u)∂u∂t|2dx, | (3.27) |
since
∫Ωg′(u)|∂u∂t|2(φ−Δφ)dx≤c∫Ω|∂u∂t|2(|φ|+|Δφ|)dx≤12‖∇∂u∂t‖2+c(‖φ‖2+‖Δφ‖2), | (3.28) |
∫Ωg(u)∂u∂tΔφdx=−∫Ωg′(u)∇u∂u∂t∇φdx−∫Ωg(u)∇∂u∂t∇φdx | (3.29) |
and then,
|∫Ωg′(u)∇u∂u∂t∇φdx|≤c∫Ω|∇u||∂u∂t||∇φ|dx≤16‖∇∂u∂t‖2+c‖∇u‖2‖Δφ‖2 | (3.30) |
and
|∫Ωg(u)∇∂u∂t∇φdx|≤c∫Ω(|u|+1)|∇∂u∂t||∇φ|dx≤16‖∇∂u∂t‖2+c(‖∇u‖2+1)‖∇φ‖2. | (3.31) |
Furthemore,
∫Ω|g(u)∂u∂t|2dx≤c∫Ω(|u|+1)2|∂u∂t|2dx≤c(‖∇u‖2+‖u‖2+1)‖∂u∂t‖2. | (3.32) |
Now, collecting (3.27)–(3.32) and owing to (3.20), we are led to
ddt‖∂u∂t‖2+c‖∇∂u∂t‖2≤c′(‖u‖2H1(Ω)+1)(‖∂u∂t‖2+‖φ‖2H2(Ω)). | (3.33) |
Adding (3.19),
dE3dt+c(‖∂u∂t‖2H1(Ω)+‖∂φ∂t‖2H2(Ω))≤c′E3+c″, | (3.34) |
where
E3=E2+ε1‖∇φ‖2+ε2‖∂u∂t‖2 | (3.35) |
enjoys
E3≥c(‖u‖2H(Ω)+‖u‖k+2k+2+‖φ‖2H2(Ω))−c′ | (3.36) |
and
E3≤c″(‖u‖2H(Ω)+‖u‖k+2k+2+‖φ‖2H2(Ω))−c‴. | (3.37) |
We complete the proof applying Gronwall's lemma.
We now give a uniqueness result
Theorem 3.3. Under assumptions of Theorem 3.2 and assuming that (3.5) holds true. The problem (1.9)-(1.12) has a unique solution
Proof. We suppose the existence of two solutions
∂u∂t−Δu+f(u1)−f(u2)=g(u1)(φ−Δφ)+(g(u1)−g(u2))(φ2−Δφ2), | (3.38) |
∂φ∂t−Δ∂φ∂t−Δφ=−g(u1)∂u∂t−(g(u1)−g(u2))∂u2∂t, | (3.39) |
u|∂Ω=φ|∂Ω=0, | (3.40) |
u|t=0=u01−u02,φ|t=0=φ01−φ02, | (3.41) |
with
Multiplying (3.38) by
12ddt‖∇u‖2+‖∂u∂t‖2+∫Ω(f(u1−f(u2)))∂u∂tdx=∫Ωg(u1)(φ−Δφ)∂u∂tdx+∫Ω(g(u1)−g(u2))(φ2−Δφ2)∂u∂tdx. | (3.42) |
Multiplying (3.39) by
12ddt(‖φ‖2+‖∇φ‖2)+‖∇φ‖2=−∫Ωg(u1)∂u∂tφdx−∫Ω(g(u1)−g(u2))∂u2∂tφdx. | (3.43) |
Multiplying (3.39) by
12ddt(‖∇φ‖2+‖Δφ‖2)+‖Δφ‖2=∫Ωg(u1)∂u∂tΔφdx+∫Ω(g(u1)−g(u2))∂u2∂tΔφdx. | (3.44) |
Finally, adding (3.42), (3.43) and (3.44), we get
dE4dt+‖∂u∂t‖2+‖∇φ‖2+‖Δφ‖2+∫Ω(f(u1)−f(u2))∂u∂tdx=∫Ω(g(u1)−g(u2))(φ2−Δφ2)∂u∂tdx−∫Ω(g(u1)−g(u2))(φ−Δφ)∂u2∂tdx, | (3.45) |
where
E4=‖∇u‖2+‖φ‖2+2‖∇φ‖2+‖Δφ‖2. | (3.46) |
Now, owing to (3.5), and applying Hölder's inequality for
∫Ω(f(u1)−f(u2))∂u∂tdx≤c∫Ω(|u2|k+1)|u||∂u∂t|dx≤c(‖∇u2‖2k+1)‖∇u‖2+‖∂u∂t‖2, | (3.47) |
we also get, thanks to (3.4), and applying Hölder's inequality,
∫Ω(g(u1)−g(u2))(φ2−Δφ2)∂u∂tdx≤c∫Ω|u||φ2−Δφ2||∂u∂t|dx≤c‖∇u‖2(‖φ2‖2+‖Δφ2‖2)+‖∂u∂t‖2 | (3.48) |
and
∫Ω(g(u1)−g(u2))(φ−Δφ)∂u2∂tdx≤c∫Ω|u||∂u∂t||φ−Δφ|dx≤c‖∂u2∂t‖2(‖φ‖2+‖Δφ‖2)+‖∇u‖2. | (3.49) |
From (3.45)-(3.49), we deduce a differential inequality of the type
dE4dt+c‖∂u∂t‖2≤c(‖∇u2‖2k+‖∂u2∂t‖2+‖φ2‖2+‖Δφ2‖2+1)E4. | (3.50) |
In particular,
dE4dt≤cE4 | (3.51) |
and then applying the Gronwall's lemma to (3.51), we end the proof.
This section is devoted to the existence of bounded absorbing sets for the semigroup
∀ϵ>0,|G(u)|2≤ϵF(s)+cϵ,s∈R. | (4.1) |
We then have
Theorem 4.1. Under the assumptions of the Theorem 3.3 and assuming that (4.1) holds true. Then,
Proof. Going from (3.8) and (3.10), we get, summing (3.8) and
dE5dt+2(c‖∇u‖2+δ∫ΩF(u)dx+‖∂u∂t‖2+‖∇φ‖2+‖Δφ‖2)≤2c′δ∫Ω|G(u)|2dx+δ(‖φ‖2+‖Δφ‖2)+c″≤2c′δ∫Ω|G(u)|2dx+δ(c‖∇φ‖2+‖Δφ‖2)+c″, | (4.2) |
where
E5=δ‖u‖2+‖∇u‖2+2∫ΩF(u)dx+‖φ‖2+2‖∇φ‖2+‖Δφ‖2 | (4.3) |
satisfies
E5≥c(‖u‖2H1(Ω)+‖u‖k+2k+2+‖φ‖2H2(Ω))−c′ | (4.4) |
and
E5≤c″(‖u‖2H1(Ω)+‖u‖k+2k+2+‖φ‖2H2(Ω))−c‴. | (4.5) |
From (4.2) and owing to (4.1), we obtain
dE5dt+2(c‖∇u‖2+δ∫ΩF(u)dx+‖∂u∂t‖2+‖∇φ‖2+‖Δφ‖2)≤Cϵ∫ΩF(u)dx+δ(c‖∇φ‖2+‖Δφ‖2)+C′ϵ, | (4.6) |
where
2δ≥Cϵand2>cδ, | (4.7) |
we then deduce from (4.6),
dE5dt+c(E5+‖∂u∂t‖2)≤c′, | (4.8) |
we complete the proof applying the Gronwall's lemma.
Remark 4.2. It follows from theorems 3.1, 3.2 and 4.1 that we can define the family solving operators:
S(t):Φ⟶Φ,(u0,φ0)↦(u(t),φ(t)),∀t≥0, | (4.9) |
where
The aim of this section is to study the spatial behavior of solutions in a semi-infinite cylinder, assuming that such solutions exist. This study is motivated by the possibility of extending results obtained above to the case of unbounded domains like semi-infinite cylinders. To do so, we will study the behavior of solutions in a semi-infinite cylinder denoted
u=φ=0on(0,+∞)×∂D×(0,T) | (5.1) |
and
u(0,x2,x3;t)=h(x2,x3;t),φ(0,x2,x3;t)=l(x2,x3;t)on{0}×D×(0,T), | (5.2) |
where
We also consider following initial data
u|t=0=φ|t=0=0onR. | (5.3) |
Let us suppose that such solutions exist. We consider the function
Fw(z,t)=∫t0∫D(z)e−ws(usu,1+φ(φ,1+φ,1s)+φsφ,1)dads, | (5.4) |
where
Fw(z+h,t)−Fw(z,t)=e−wt2∫R(z,z+h)(|∇u|2+2F(u)+|φ|2+2|∇φ|2+|Δφ|2)dx+∫t0∫R(z,z+h)e−ws(|us|2+|∇φ|2+|Δφ|2)dxds+w2∫t0∫R(z,z+h)e−ws(|∇u|2+2F(u)+|φ|2+2|∇φ|2+|Δφ|2)dxds, | (5.5) |
where
Hence,
∂Fw∂t(z,t)=e−wt2∫D(z)(|∇u|2+2F(u)+|φ|2+2|∇φ|2+|Δφ|2)da+∫t0∫D(z)e−ws(|us|2+|∇φ|2+|Δφ|2)dads+w2∫t0∫D(z)e−ws(|∇u|2+2F(u)+|φ|2+2|∇φ|2+|Δφ|2)dads. | (5.6) |
We consider a second function, namely,
Gw(z,t)=∫t0∫D(z)e−ws(usu,1+φ(θ,1+φ,1s))dads, | (5.7) |
where
Similarly, we have
Gw(z+h,t)−Gw(z,t)=e−wt2∫R(z,z+h)(|u|2+|∇θ|2)dx+∫t0∫R(z,z+h)e−ws(|∇u|2+f(u)u+uΔφ+|φ|2+|∇φ|2)dxds+w2∫t0∫R(z,z+h)e−ws(|u|2+|∇θ|2)dxds+∫t0∫R(z,z+h)e−ws(G(u)−g(u)u)φdxds | (5.8) |
and then
∂Gw∂t(z,t)=e−wt2∫D(z)(|u|2+|∇θ|2)da+∫t0∫D(z)e−ws(|∇u|2+f(u)u+uΔφ+|φ|2+|∇φ|2)dads+w2∫t0∫D(z)e−ws(|u|2+|∇θ|2)dads+∫t0∫D(z)e−ws(G(u)−g(u)u)φdads. | (5.9) |
We choose
2F(u)+τu2≥C1u2,C1>0. | (5.10) |
Now, we focus on the nonliear part i.e.,
w(F(u)+τ2|u|2)+τf(u)u+τ(G(u)−g(u)u)φ+w2|φ|2. | (5.11) |
We assume that
For
w(F(u)+τ2|u|2)+τf(u)u+τ(G(u)−g(u)u)φ+w2|φ|2≥C3(|u|2+|φ|2+|Δφ|2). | (5.12) |
Taking into account previous choices, it clearly appears that the following function
Hw=Fw+τGw | (5.13) |
satisfies
∂Hw∂t(z,t)≥C4∫t0∫D(z)e−ws(|u|2+|∇u|2+|us|2+|φ|2+|∇φ|2+|Δφ|2+|∇θ|2)dads. | (5.14) |
We give now an estimate of
|Fw|≤(∫t0∫D(z)e−wsu2sdads)1/2(e−wsu2,1)1/2+(∫t0∫D(z)e−wsφ2dads)1/2(e−wsφ2,1)1/2+(∫t0∫D(z)e−wsφ2dads)1/2(e−wsφ2,1s)1/2+(∫t0∫D(z)e−wsφ2sdads)1/2(e−wsφ2,1)1/2≤C5∫t0∫D(z)e−ws(|∇u|2+|us|2+|φ|2+|∇φ|2+|φs|2+|∇φs|2)dads,C5>0. | (5.15) |
Similarly,
|Gw|≤(∫t0∫D(z)e−wsu2dads)1/2(∫t0∫D(z)e−wsu2,1dads)1/2+(∫t0∫D(z)e−wsφ2dads)1/2(∫t0∫D(z)e−wsθ2,1dads)1/2+(∫t0∫D(z)e−wsφ2sdads)1/2(∫t0∫D(z)e−wsφ2,1dads)1/2≤C6∫t0∫D(z)e−ws(|u|2+|∇u|2+|φ|2+|∇φ|2+|∇θ|2)dads,C6>0. | (5.16) |
We then deduce the existence of a positive constant
|Hw|≤C7∂Hw∂z. | (5.17) |
Remark 5.1. The inequality (5.17) is well known in the study of spatial estimates and leads to the Phragmén-Lindelöf alternative (see, e.g., [9], [39]).
In particular, if there exist
Hw(z,t)≥Hw(z0,t)eC−17(z−z0),z≥z0. | (5.18) |
The estimate (5.18) gives information in terms of measure defined in the cylinder. Actually, from (5.18), we deduce that
e−wt2∫R(0,z)(|∇u|2+2F(u)+|φ|2+2|∇φ|2+|Δφ|2)dx+τe−wt2∫R(0,z)(|u|2+|∇θ|2)dx+∫t0∫R(0,z)e−ws(|us|2+|∇φ|2+|Δφ|2)dxds+τ∫t0∫R(0,z)e−ws(|∇u|2+f(u)u+g(u)uΔφ+|φ|2+2|∇φ|2)dxds+w2∫t0∫R(0,z)e−ws(|∇u|2+2F(u)+|φ|2+2|∇φ|2+|Δφ|2)dxds+τw2∫t0∫R(0,z)e−ws(|u|2+|∇θ|2)dx+τ∫t0∫R(0,z)e−ws(G(u)−g(u)u)φdxds | (5.19) |
tends to infinity exponentially fast. On the other hand, if
−Hw(z,t)≤−Hw(0,t)eC−17z,z≥0, | (5.20) |
where
Ew(z,t)=e−wt2∫R(z)(|∇u|2+2F(u)+|φ|2+2|∇φ|2+|Δφ|2)dx+τe−wt2∫R(z)(|u|2+|∇θ|2)dx+∫t0∫R(z)e−ws(|us|2+|∇φ|2+|Δφ|2)dxds+τ∫t0∫R(z)e−ws(|∇u|2+f(u)u+g(u)uΔφ+|φ|2+2|∇φ|2)dxds+w2∫t0∫R(z)e−ws(|∇u|2+2F(u)+|φ|2+2|∇φ|2+|Δφ|2)dxds+τw2∫t0∫R(z)e−ws(|u|2+|∇θ|2)dx+τ∫t0∫R(z)e−ws(G(u)−g(u)u)φdxds | (5.21) |
and
Finally, setting
Ew(z,t)=12∫R(z)(|∇u|2+2F(u)+|φ|2+2|∇φ|2+|Δφ|2)dx+τ12∫R(z)(|u|2+|∇θ|2)dx+∫t0∫R(z)(|us|2+|∇φ|2+|Δφ|2)dxds+τ∫t0∫R(z)(|∇u|2+f(u)u+g(u)uΔφ+|φ|2+2|∇φ|2)dxds+w2∫t0∫R(z)(|∇u|2+2F(u)+|φ|2+2|∇φ|2+|Δφ|2)dxds+τw2∫t0∫R(z)(|u|2+|∇θ|2)dx+τ∫t0∫R(z)(G(u)−g(u)u)φdxds. | (5.22) |
We have the following result
Theorem 5.2. Let
Ew(z,t)≤Ew(0,t)ewt−C−17z,z≥0, | (5.23) |
where the energy
The author would like to thank Alain Miranville for his advices and for his careful reading of this paper.
The author declares no conflicts of interest in this paper.
[1] | [ F. Bauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Part IV 2nd edition, Springer-Verlag, New York, 2012. |
[2] | [ M. H. A. Biswas,L. T. Paiva,MdR. de Pinho, A SEIR model for control of infectious diseases with constraints, Mathematical Biosciences and Engineering, 11 (2014): 761-784. |
[3] | [ A. E. Bryson,W. F. Denham,S. E. Dreyfus, Optimal Programming Problems with Inequality Constraints I, AIAA Journal, 1 (1963): 2544-2550. |
[4] | [ O. Diekmann,H. Heesterbeek,T. Britton, null, Mathematical Tools for Understanding Infectious Disease Dynamics, Princton University Press, Princton, 2013. |
[5] | [ R. Fourer, D. Gay and B. Kernighan, AMPL: A Modeling Language for Mathematical Programming Duxbury Press, Pacific Grove, 2002. |
[6] | [ W. E. Hamilton, On nonexistence of boundary arcs in control problems with bounded state variables, IEEE Transactions on Automatic Control, AC-17 (1972): 338-343. |
[7] | [ R. F. Hartl,S. P. Sethi,R. G. Vickson, A survey of the maximum principles for optimal control problems with state constraints, SIAM Review, 37 (1995): 181-218. |
[8] | [ K. Ito,K. Kunisch, Asymptotic properties of receding horizont optimal control problems, SIAM J. Control Optim., 40 (2002): 1585-1610. |
[9] | [ D. H. Jacobson,M. M. Lele,J. L.. Speyer, New necessary conditions of optimality for control problems with state variable inequality constraints, Journal of Mathematical Analysis and Applications, 35 (1971): 255-284. |
[10] | [ I. Kornienko,L. T. Paiva,MdR. de Pinho, Introducing state constraints in optimal control for health problems, Procedia Technology, 17 (2014): 415-422. |
[11] | [ V. Lykina, Beiträge zur Theorie der Optimalsteuerungsprobleme mit unendlichem Zeithorizont, Dissertation, Brandenburgische Technische Universität Cottbus, Germany, 2010, http://opus.kobv.de/btu/volltexte/2010/1861/pdf/dissertationLykina.pdf. |
[12] | [ V. Lykina,S. Pickenhain,M. Wagner, On a resource allocation model with infinite horizon, Applied Mathematics and Computation, 204 (2008): 595-601. |
[13] | [ H. Maurer,H. J Pesch, Direct optimization methods for solving a complex state-constrained optimal control problem in microeconomics, Applied Mathematics and Computation, 204 (2008): 568-579. |
[14] | [ H. Maurer,MdR. de Pinho, Optimal control of epidemiological SEIR models with L1-objectives and control-state constraints, Pac. J. Optim., 12 (2016): 415-436. |
[15] | [ J. D. Murray, Mathematical Biology: Ⅰ An Introduction 3rd edition, Springer-Verlag, New York, 2002. |
[16] | [ J. D. Murray, Mathematical Biology: Ⅱ Spatial Models and Biomedical Applications 3rd edition, Springer-Verlag, New York, 2003. |
[17] | [ R. M. Neilan,S. Lenhart, An introduction to optimal control with an application in disease modeling, DIMACS Series in Discrete Mathematics, 75 (2010): 67-81. |
[18] | [ H. J. Pesch, A practical guide to the solution of real-life optimal control problems, Control and Cybernetics, 23 (1994): 7-60. |
[19] | [ S. Pickenhain, Infinite horizon optimal control problems in the light of convex analysis in Hilbert Spaces, Set-Valued and Variational Analysis, 23 (2015): 169-189. |
[20] | [ M. Plail and H. J. Pesch, The Cold War and the maximum principle of optimal control, Doc. Math. , 2012, Extra vol. : Optimization stories, 331–343. |
[21] | [ H. Schättler,U. Ledzewicz,H. Maurer, Sufficient conditions for strong local optimality in optimal control problems of L:2-type objectives and control constraints, Dicrete and Continuous Dynamical Systems Series B, 19 (2014): 2657-2679. |
[22] | [ M. Thäter, Restringierte Optimalsteuerungsprobleme bei Epidemiemodellen Master Thesis, Department of Mathematics, University of Bayreuth in Bayreuth, 2014. |
[23] | [ P.-F. Verhulst, Notice sur la loi que la population suit dans son accroissement, Correspondance Mathématique et Physique, 10 (1838): 113-121. |
[24] | [ A. Wächter, An Interior Point Algorithm for Large-Scale Nonlinear Optimization with Applications in Process Engineering PhD Thesis, Carnegie Mellon University in Pittsburgh, 2002. |
[25] | [ A. Wächter,L.T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Mathematical Programming, 106 (2006): 25-57. |
[26] | [ D. Wenzke,V. Lykina,S. Pickenhain, State and time transformations of infinite horizon optimal control problems, Contemporary Mathematics Series of The AMS, 619 (2014): 189-208. |