Citation: Markus Thäter, Kurt Chudej, Hans Josef Pesch. Optimal vaccination strategies for an SEIR model of infectious diseases with logistic growth[J]. Mathematical Biosciences and Engineering, 2018, 15(2): 485-505. doi: 10.3934/mbe.2018022
[1] | Chentong Li, Jinyan Wang, Jinhu Xu, Yao Rong . The Global dynamics of a SIR model considering competitions among multiple strains in patchy environments. Mathematical Biosciences and Engineering, 2022, 19(5): 4690-4702. doi: 10.3934/mbe.2022218 |
[2] | Xue-Zhi Li, Ji-Xuan Liu, Maia Martcheva . An age-structured two-strain epidemic model with super-infection. Mathematical Biosciences and Engineering, 2010, 7(1): 123-147. doi: 10.3934/mbe.2010.7.123 |
[3] | Matthew D. Johnston, Bruce Pell, David A. Rubel . A two-strain model of infectious disease spread with asymmetric temporary immunity periods and partial cross-immunity. Mathematical Biosciences and Engineering, 2023, 20(9): 16083-16113. doi: 10.3934/mbe.2023718 |
[4] | Ali Mai, Guowei Sun, Lin Wang . The impacts of dispersal on the competition outcome of multi-patch competition models. Mathematical Biosciences and Engineering, 2019, 16(4): 2697-2716. doi: 10.3934/mbe.2019134 |
[5] | Abdelrazig K. Tarboush, Jing Ge, Zhigui Lin . Coexistence of a cross-diffusive West Nile virus model in a heterogenous environment. Mathematical Biosciences and Engineering, 2018, 15(6): 1479-1494. doi: 10.3934/mbe.2018068 |
[6] | Azmy S. Ackleh, Mark L. Delcambre, Karyn L. Sutton, Don G. Ennis . A structured model for the spread of Mycobacterium marinum: Foundations for a numerical approximation scheme. Mathematical Biosciences and Engineering, 2014, 11(4): 679-721. doi: 10.3934/mbe.2014.11.679 |
[7] | Nancy Azer, P. van den Driessche . Competition and Dispersal Delays in Patchy Environments. Mathematical Biosciences and Engineering, 2006, 3(2): 283-296. doi: 10.3934/mbe.2006.3.283 |
[8] | Junjing Xiong, Xiong Li, Hao Wang . The survival analysis of a stochastic Lotka-Volterra competition model with a coexistence equilibrium. Mathematical Biosciences and Engineering, 2019, 16(4): 2717-2737. doi: 10.3934/mbe.2019135 |
[9] | Yanxia Dang, Zhipeng Qiu, Xuezhi Li . Competitive exclusion in an infection-age structured vector-host epidemic model. Mathematical Biosciences and Engineering, 2017, 14(4): 901-931. doi: 10.3934/mbe.2017048 |
[10] | Azmy S. Ackleh, Shuhua Hu . Comparison between stochastic and deterministic selection-mutation models. Mathematical Biosciences and Engineering, 2007, 4(2): 133-157. doi: 10.3934/mbe.2007.4.133 |
[1] | [ F. Bauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Part IV 2nd edition, Springer-Verlag, New York, 2012. |
[2] | [ M. H. A. Biswas,L. T. Paiva,MdR. de Pinho, A SEIR model for control of infectious diseases with constraints, Mathematical Biosciences and Engineering, 11 (2014): 761-784. |
[3] | [ A. E. Bryson,W. F. Denham,S. E. Dreyfus, Optimal Programming Problems with Inequality Constraints I, AIAA Journal, 1 (1963): 2544-2550. |
[4] | [ O. Diekmann,H. Heesterbeek,T. Britton, null, Mathematical Tools for Understanding Infectious Disease Dynamics, Princton University Press, Princton, 2013. |
[5] | [ R. Fourer, D. Gay and B. Kernighan, AMPL: A Modeling Language for Mathematical Programming Duxbury Press, Pacific Grove, 2002. |
[6] | [ W. E. Hamilton, On nonexistence of boundary arcs in control problems with bounded state variables, IEEE Transactions on Automatic Control, AC-17 (1972): 338-343. |
[7] | [ R. F. Hartl,S. P. Sethi,R. G. Vickson, A survey of the maximum principles for optimal control problems with state constraints, SIAM Review, 37 (1995): 181-218. |
[8] | [ K. Ito,K. Kunisch, Asymptotic properties of receding horizont optimal control problems, SIAM J. Control Optim., 40 (2002): 1585-1610. |
[9] | [ D. H. Jacobson,M. M. Lele,J. L.. Speyer, New necessary conditions of optimality for control problems with state variable inequality constraints, Journal of Mathematical Analysis and Applications, 35 (1971): 255-284. |
[10] | [ I. Kornienko,L. T. Paiva,MdR. de Pinho, Introducing state constraints in optimal control for health problems, Procedia Technology, 17 (2014): 415-422. |
[11] | [ V. Lykina, Beiträge zur Theorie der Optimalsteuerungsprobleme mit unendlichem Zeithorizont, Dissertation, Brandenburgische Technische Universität Cottbus, Germany, 2010, http://opus.kobv.de/btu/volltexte/2010/1861/pdf/dissertationLykina.pdf. |
[12] | [ V. Lykina,S. Pickenhain,M. Wagner, On a resource allocation model with infinite horizon, Applied Mathematics and Computation, 204 (2008): 595-601. |
[13] | [ H. Maurer,H. J Pesch, Direct optimization methods for solving a complex state-constrained optimal control problem in microeconomics, Applied Mathematics and Computation, 204 (2008): 568-579. |
[14] | [ H. Maurer,MdR. de Pinho, Optimal control of epidemiological SEIR models with L1-objectives and control-state constraints, Pac. J. Optim., 12 (2016): 415-436. |
[15] | [ J. D. Murray, Mathematical Biology: Ⅰ An Introduction 3rd edition, Springer-Verlag, New York, 2002. |
[16] | [ J. D. Murray, Mathematical Biology: Ⅱ Spatial Models and Biomedical Applications 3rd edition, Springer-Verlag, New York, 2003. |
[17] | [ R. M. Neilan,S. Lenhart, An introduction to optimal control with an application in disease modeling, DIMACS Series in Discrete Mathematics, 75 (2010): 67-81. |
[18] | [ H. J. Pesch, A practical guide to the solution of real-life optimal control problems, Control and Cybernetics, 23 (1994): 7-60. |
[19] | [ S. Pickenhain, Infinite horizon optimal control problems in the light of convex analysis in Hilbert Spaces, Set-Valued and Variational Analysis, 23 (2015): 169-189. |
[20] | [ M. Plail and H. J. Pesch, The Cold War and the maximum principle of optimal control, Doc. Math. , 2012, Extra vol. : Optimization stories, 331–343. |
[21] | [ H. Schättler,U. Ledzewicz,H. Maurer, Sufficient conditions for strong local optimality in optimal control problems of L:2-type objectives and control constraints, Dicrete and Continuous Dynamical Systems Series B, 19 (2014): 2657-2679. |
[22] | [ M. Thäter, Restringierte Optimalsteuerungsprobleme bei Epidemiemodellen Master Thesis, Department of Mathematics, University of Bayreuth in Bayreuth, 2014. |
[23] | [ P.-F. Verhulst, Notice sur la loi que la population suit dans son accroissement, Correspondance Mathématique et Physique, 10 (1838): 113-121. |
[24] | [ A. Wächter, An Interior Point Algorithm for Large-Scale Nonlinear Optimization with Applications in Process Engineering PhD Thesis, Carnegie Mellon University in Pittsburgh, 2002. |
[25] | [ A. Wächter,L.T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Mathematical Programming, 106 (2006): 25-57. |
[26] | [ D. Wenzke,V. Lykina,S. Pickenhain, State and time transformations of infinite horizon optimal control problems, Contemporary Mathematics Series of The AMS, 619 (2014): 189-208. |
1. | Yixiang Wu, Necibe Tuncer, Maia Martcheva, Coexistence and competitive exclusion in an SIS model with standard incidence and diffusion, 2017, 22, 1553-524X, 1167, 10.3934/dcdsb.2017057 | |
2. | Junping Shi, Yixiang Wu, Xingfu Zou, Coexistence of Competing Species for Intermediate Dispersal Rates in a Reaction–Diffusion Chemostat Model, 2020, 32, 1040-7294, 1085, 10.1007/s10884-019-09763-0 | |
3. | Yixiang Wu, Xingfu Zou, Asymptotic profiles of steady states for a diffusive SIS epidemic model with mass action infection mechanism, 2016, 261, 00220396, 4424, 10.1016/j.jde.2016.06.028 | |
4. | Lin Zhao, Zhi-Cheng Wang, Shigui Ruan, Dynamics of a time-periodic two-strain SIS epidemic model with diffusion and latent period, 2020, 51, 14681218, 102966, 10.1016/j.nonrwa.2019.102966 | |
5. | Jing Ge, Ling Lin, Lai Zhang, A diffusive SIS epidemic model incorporating the media coverage impact in the heterogeneous environment, 2017, 22, 1553-524X, 2763, 10.3934/dcdsb.2017134 | |
6. | Yuan Lou, Rachidi B. Salako, Control Strategies for a Multi-strain Epidemic Model, 2022, 84, 0092-8240, 10.1007/s11538-021-00957-6 | |
7. | Jinsheng Guo, Shuang-Ming Wang, Threshold dynamics of a time-periodic two-strain SIRS epidemic model with distributed delay, 2022, 7, 2473-6988, 6331, 10.3934/math.2022352 | |
8. | Rachidi B. Salako, Impact of population size and movement on the persistence of a two-strain infectious disease, 2023, 86, 0303-6812, 10.1007/s00285-022-01842-z | |
9. | Yuan Lou, Rachidi B. Salako, Mathematical analysis of the dynamics of some reaction-diffusion models for infectious diseases, 2023, 370, 00220396, 424, 10.1016/j.jde.2023.06.018 | |
10. | Jonas T. Doumatè, Tahir B. Issa, Rachidi B. Salako, Competition-exclusion and coexistence in a two-strain SIS epidemic model in patchy environments, 2023, 0, 1531-3492, 0, 10.3934/dcdsb.2023213 | |
11. | Azmy S. Ackleh, Nicolas Saintier, Aijun Zhang, A multiple-strain pathogen model with diffusion on the space of Radon measures, 2025, 140, 10075704, 108402, 10.1016/j.cnsns.2024.108402 | |
12. | Jamal Adetola, Keoni G. Castellano, Rachidi B. Salako, Dynamics of classical solutions of a multi-strain diffusive epidemic model with mass-action transmission mechanism, 2025, 90, 0303-6812, 10.1007/s00285-024-02167-9 |