Optimal vaccination strategies for an SEIR model of infectious diseases with logistic growth

  • Received: 30 July 2016 Accepted: 15 May 2017 Published: 01 April 2018
  • MSC : Primary: 49K15, 49M25, 90C90, 92D30; Secondary: 34A34

  • In this paper an improved SEIR model for an infectious disease is presented which includes logistic growth for the total population. The aim is to develop optimal vaccination strategies against the spread of a generic disease. These vaccination strategies arise from the study of optimal control problems with various kinds of constraints including mixed control-state and state constraints. After presenting the new model and implementing the optimal control problems by means of a first-discretize-then-optimize method, numerical results for six scenarios are discussed and compared to an analytical optimal control law based on Pontrygin's minimum principle that allows to verify these results as approximations of candidate optimal solutions.

    Citation: Markus Thäter, Kurt Chudej, Hans Josef Pesch. Optimal vaccination strategies for an SEIR model of infectious diseases with logistic growth[J]. Mathematical Biosciences and Engineering, 2018, 15(2): 485-505. doi: 10.3934/mbe.2018022

    Related Papers:

    [1] Chentong Li, Jinyan Wang, Jinhu Xu, Yao Rong . The Global dynamics of a SIR model considering competitions among multiple strains in patchy environments. Mathematical Biosciences and Engineering, 2022, 19(5): 4690-4702. doi: 10.3934/mbe.2022218
    [2] Xue-Zhi Li, Ji-Xuan Liu, Maia Martcheva . An age-structured two-strain epidemic model with super-infection. Mathematical Biosciences and Engineering, 2010, 7(1): 123-147. doi: 10.3934/mbe.2010.7.123
    [3] Matthew D. Johnston, Bruce Pell, David A. Rubel . A two-strain model of infectious disease spread with asymmetric temporary immunity periods and partial cross-immunity. Mathematical Biosciences and Engineering, 2023, 20(9): 16083-16113. doi: 10.3934/mbe.2023718
    [4] Ali Mai, Guowei Sun, Lin Wang . The impacts of dispersal on the competition outcome of multi-patch competition models. Mathematical Biosciences and Engineering, 2019, 16(4): 2697-2716. doi: 10.3934/mbe.2019134
    [5] Abdelrazig K. Tarboush, Jing Ge, Zhigui Lin . Coexistence of a cross-diffusive West Nile virus model in a heterogenous environment. Mathematical Biosciences and Engineering, 2018, 15(6): 1479-1494. doi: 10.3934/mbe.2018068
    [6] Azmy S. Ackleh, Mark L. Delcambre, Karyn L. Sutton, Don G. Ennis . A structured model for the spread of Mycobacterium marinum: Foundations for a numerical approximation scheme. Mathematical Biosciences and Engineering, 2014, 11(4): 679-721. doi: 10.3934/mbe.2014.11.679
    [7] Nancy Azer, P. van den Driessche . Competition and Dispersal Delays in Patchy Environments. Mathematical Biosciences and Engineering, 2006, 3(2): 283-296. doi: 10.3934/mbe.2006.3.283
    [8] Junjing Xiong, Xiong Li, Hao Wang . The survival analysis of a stochastic Lotka-Volterra competition model with a coexistence equilibrium. Mathematical Biosciences and Engineering, 2019, 16(4): 2717-2737. doi: 10.3934/mbe.2019135
    [9] Yanxia Dang, Zhipeng Qiu, Xuezhi Li . Competitive exclusion in an infection-age structured vector-host epidemic model. Mathematical Biosciences and Engineering, 2017, 14(4): 901-931. doi: 10.3934/mbe.2017048
    [10] Azmy S. Ackleh, Shuhua Hu . Comparison between stochastic and deterministic selection-mutation models. Mathematical Biosciences and Engineering, 2007, 4(2): 133-157. doi: 10.3934/mbe.2007.4.133
  • In this paper an improved SEIR model for an infectious disease is presented which includes logistic growth for the total population. The aim is to develop optimal vaccination strategies against the spread of a generic disease. These vaccination strategies arise from the study of optimal control problems with various kinds of constraints including mixed control-state and state constraints. After presenting the new model and implementing the optimal control problems by means of a first-discretize-then-optimize method, numerical results for six scenarios are discussed and compared to an analytical optimal control law based on Pontrygin's minimum principle that allows to verify these results as approximations of candidate optimal solutions.


    [1] [ F. Bauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Part IV 2nd edition, Springer-Verlag, New York, 2012.
    [2] [ M. H. A. Biswas,L. T. Paiva,MdR. de Pinho, A SEIR model for control of infectious diseases with constraints, Mathematical Biosciences and Engineering, 11 (2014): 761-784.
    [3] [ A. E. Bryson,W. F. Denham,S. E. Dreyfus, Optimal Programming Problems with Inequality Constraints I, AIAA Journal, 1 (1963): 2544-2550.
    [4] [ O. Diekmann,H. Heesterbeek,T. Britton, null, Mathematical Tools for Understanding Infectious Disease Dynamics, Princton University Press, Princton, 2013.
    [5] [ R. Fourer, D. Gay and B. Kernighan, AMPL: A Modeling Language for Mathematical Programming Duxbury Press, Pacific Grove, 2002.
    [6] [ W. E. Hamilton, On nonexistence of boundary arcs in control problems with bounded state variables, IEEE Transactions on Automatic Control, AC-17 (1972): 338-343.
    [7] [ R. F. Hartl,S. P. Sethi,R. G. Vickson, A survey of the maximum principles for optimal control problems with state constraints, SIAM Review, 37 (1995): 181-218.
    [8] [ K. Ito,K. Kunisch, Asymptotic properties of receding horizont optimal control problems, SIAM J. Control Optim., 40 (2002): 1585-1610.
    [9] [ D. H. Jacobson,M. M. Lele,J. L.. Speyer, New necessary conditions of optimality for control problems with state variable inequality constraints, Journal of Mathematical Analysis and Applications, 35 (1971): 255-284.
    [10] [ I. Kornienko,L. T. Paiva,MdR. de Pinho, Introducing state constraints in optimal control for health problems, Procedia Technology, 17 (2014): 415-422.
    [11] [ V. Lykina, Beiträge zur Theorie der Optimalsteuerungsprobleme mit unendlichem Zeithorizont, Dissertation, Brandenburgische Technische Universität Cottbus, Germany, 2010, http://opus.kobv.de/btu/volltexte/2010/1861/pdf/dissertationLykina.pdf.
    [12] [ V. Lykina,S. Pickenhain,M. Wagner, On a resource allocation model with infinite horizon, Applied Mathematics and Computation, 204 (2008): 595-601.
    [13] [ H. Maurer,H. J Pesch, Direct optimization methods for solving a complex state-constrained optimal control problem in microeconomics, Applied Mathematics and Computation, 204 (2008): 568-579.
    [14] [ H. Maurer,MdR. de Pinho, Optimal control of epidemiological SEIR models with L1-objectives and control-state constraints, Pac. J. Optim., 12 (2016): 415-436.
    [15] [ J. D. Murray, Mathematical Biology: Ⅰ An Introduction 3rd edition, Springer-Verlag, New York, 2002.
    [16] [ J. D. Murray, Mathematical Biology: Ⅱ Spatial Models and Biomedical Applications 3rd edition, Springer-Verlag, New York, 2003.
    [17] [ R. M. Neilan,S. Lenhart, An introduction to optimal control with an application in disease modeling, DIMACS Series in Discrete Mathematics, 75 (2010): 67-81.
    [18] [ H. J. Pesch, A practical guide to the solution of real-life optimal control problems, Control and Cybernetics, 23 (1994): 7-60.
    [19] [ S. Pickenhain, Infinite horizon optimal control problems in the light of convex analysis in Hilbert Spaces, Set-Valued and Variational Analysis, 23 (2015): 169-189.
    [20] [ M. Plail and H. J. Pesch, The Cold War and the maximum principle of optimal control, Doc. Math. , 2012, Extra vol. : Optimization stories, 331–343.
    [21] [ H. Schättler,U. Ledzewicz,H. Maurer, Sufficient conditions for strong local optimality in optimal control problems of L:2-type objectives and control constraints, Dicrete and Continuous Dynamical Systems Series B, 19 (2014): 2657-2679.
    [22] [ M. Thäter, Restringierte Optimalsteuerungsprobleme bei Epidemiemodellen Master Thesis, Department of Mathematics, University of Bayreuth in Bayreuth, 2014.
    [23] [ P.-F. Verhulst, Notice sur la loi que la population suit dans son accroissement, Correspondance Mathématique et Physique, 10 (1838): 113-121.
    [24] [ A. Wächter, An Interior Point Algorithm for Large-Scale Nonlinear Optimization with Applications in Process Engineering PhD Thesis, Carnegie Mellon University in Pittsburgh, 2002.
    [25] [ A. Wächter,L.T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Mathematical Programming, 106 (2006): 25-57.
    [26] [ D. Wenzke,V. Lykina,S. Pickenhain, State and time transformations of infinite horizon optimal control problems, Contemporary Mathematics Series of The AMS, 619 (2014): 189-208.
  • This article has been cited by:

    1. Yixiang Wu, Necibe Tuncer, Maia Martcheva, Coexistence and competitive exclusion in an SIS model with standard incidence and diffusion, 2017, 22, 1553-524X, 1167, 10.3934/dcdsb.2017057
    2. Junping Shi, Yixiang Wu, Xingfu Zou, Coexistence of Competing Species for Intermediate Dispersal Rates in a Reaction–Diffusion Chemostat Model, 2020, 32, 1040-7294, 1085, 10.1007/s10884-019-09763-0
    3. Yixiang Wu, Xingfu Zou, Asymptotic profiles of steady states for a diffusive SIS epidemic model with mass action infection mechanism, 2016, 261, 00220396, 4424, 10.1016/j.jde.2016.06.028
    4. Lin Zhao, Zhi-Cheng Wang, Shigui Ruan, Dynamics of a time-periodic two-strain SIS epidemic model with diffusion and latent period, 2020, 51, 14681218, 102966, 10.1016/j.nonrwa.2019.102966
    5. Jing Ge, Ling Lin, Lai Zhang, A diffusive SIS epidemic model incorporating the media coverage impact in the heterogeneous environment, 2017, 22, 1553-524X, 2763, 10.3934/dcdsb.2017134
    6. Yuan Lou, Rachidi B. Salako, Control Strategies for a Multi-strain Epidemic Model, 2022, 84, 0092-8240, 10.1007/s11538-021-00957-6
    7. Jinsheng Guo, Shuang-Ming Wang, Threshold dynamics of a time-periodic two-strain SIRS epidemic model with distributed delay, 2022, 7, 2473-6988, 6331, 10.3934/math.2022352
    8. Rachidi B. Salako, Impact of population size and movement on the persistence of a two-strain infectious disease, 2023, 86, 0303-6812, 10.1007/s00285-022-01842-z
    9. Yuan Lou, Rachidi B. Salako, Mathematical analysis of the dynamics of some reaction-diffusion models for infectious diseases, 2023, 370, 00220396, 424, 10.1016/j.jde.2023.06.018
    10. Jonas T. Doumatè, Tahir B. Issa, Rachidi B. Salako, Competition-exclusion and coexistence in a two-strain SIS epidemic model in patchy environments, 2023, 0, 1531-3492, 0, 10.3934/dcdsb.2023213
    11. Azmy S. Ackleh, Nicolas Saintier, Aijun Zhang, A multiple-strain pathogen model with diffusion on the space of Radon measures, 2025, 140, 10075704, 108402, 10.1016/j.cnsns.2024.108402
    12. Jamal Adetola, Keoni G. Castellano, Rachidi B. Salako, Dynamics of classical solutions of a multi-strain diffusive epidemic model with mass-action transmission mechanism, 2025, 90, 0303-6812, 10.1007/s00285-024-02167-9
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5739) PDF downloads(832) Cited by(12)

Article outline

Figures and Tables

Figures(13)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog