Travelling wave solutions of the reaction-diffusion mathematical model of glioblastoma growth: An Abel equation based approach

  • Received: 01 May 2014 Accepted: 29 June 2018 Published: 01 December 2014
  • MSC : Primary: 35C07, 34A05; Secondary: 92C37.

  • We consider quasi-stationary (travelling wave type) solutions to a nonlinearreaction-diffusion equation with arbitrary, autonomous coefficients,describing the evolution of glioblastomas, aggressive primary brain tumorsthat are characterized by extensive infiltration into the brain and arehighly resistant to treatment. The second order nonlinear equationdescribing the glioblastoma growth through travelling waves can be reduced to a first order Abel typeequation. By using the integrability conditions for the Abel equationseveral classes of exact travelling wave solutions of the general reaction-diffusion equation that describes glioblastoma growth are obtained, corresponding to different forms of the product of the diffusion and reaction functions. The solutions are obtained by using the Chiellini lemma and the Lemke transformation, respectively, and the corresponding equations represent generalizations of the classical Fisher--Kolmogorov equation. The biological implications of two classes of solutions are also investigated by using both numerical and semi-analytical methods for realistic values of the biological parameters.

    Citation: Tiberiu Harko, Man Kwong Mak. Travelling wave solutions of the reaction-diffusion mathematical model of glioblastoma growth: An Abel equation based approach[J]. Mathematical Biosciences and Engineering, 2015, 12(1): 41-69. doi: 10.3934/mbe.2015.12.41

    Related Papers:

    [1] Ardak Kashkynbayev, Yerlan Amanbek, Bibinur Shupeyeva, Yang Kuang . Existence of traveling wave solutions to data-driven glioblastoma multiforme growth models with density-dependent diffusion. Mathematical Biosciences and Engineering, 2020, 17(6): 7234-7247. doi: 10.3934/mbe.2020371
    [2] M. B. A. Mansour . Computation of traveling wave fronts for a nonlinear diffusion-advection model. Mathematical Biosciences and Engineering, 2009, 6(1): 83-91. doi: 10.3934/mbe.2009.6.83
    [3] Blessing O. Emerenini, Stefanie Sonner, Hermann J. Eberl . Mathematical analysis of a quorum sensing induced biofilm dispersal model and numerical simulation of hollowing effects. Mathematical Biosciences and Engineering, 2017, 14(3): 625-653. doi: 10.3934/mbe.2017036
    [4] Maryam Basiri, Frithjof Lutscher, Abbas Moameni . Traveling waves in a free boundary problem for the spread of ecosystem engineers. Mathematical Biosciences and Engineering, 2025, 22(1): 152-184. doi: 10.3934/mbe.2025008
    [5] Tracy L. Stepien, Erica M. Rutter, Yang Kuang . A data-motivated density-dependent diffusion model of in vitro glioblastoma growth. Mathematical Biosciences and Engineering, 2015, 12(6): 1157-1172. doi: 10.3934/mbe.2015.12.1157
    [6] Nicolas Ratto, Martine Marion, Vitaly Volpert . Existence of pulses for a reaction-diffusion system of blood coagulation in flow. Mathematical Biosciences and Engineering, 2019, 16(5): 4196-4212. doi: 10.3934/mbe.2019209
    [7] Dong Liang, Jianhong Wu, Fan Zhang . Modelling Population Growth with Delayed Nonlocal Reaction in 2-Dimensions. Mathematical Biosciences and Engineering, 2005, 2(1): 111-132. doi: 10.3934/mbe.2005.2.111
    [8] Christopher DuBois, Jesse Farnham, Eric Aaron, Ami Radunskaya . A multiple time-scale computational model of a tumor and its micro environment. Mathematical Biosciences and Engineering, 2013, 10(1): 121-150. doi: 10.3934/mbe.2013.10.121
    [9] Xixia Ma, Rongsong Liu, Liming Cai . Stability of traveling wave solutions for a nonlocal Lotka-Volterra model. Mathematical Biosciences and Engineering, 2024, 21(1): 444-473. doi: 10.3934/mbe.2024020
    [10] Zhilan Feng, Wenzhang Huang, Donald L. DeAngelis . Spatially heterogeneous invasion of toxic plant mediated by herbivory. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1519-1538. doi: 10.3934/mbe.2013.10.1519
  • We consider quasi-stationary (travelling wave type) solutions to a nonlinearreaction-diffusion equation with arbitrary, autonomous coefficients,describing the evolution of glioblastomas, aggressive primary brain tumorsthat are characterized by extensive infiltration into the brain and arehighly resistant to treatment. The second order nonlinear equationdescribing the glioblastoma growth through travelling waves can be reduced to a first order Abel typeequation. By using the integrability conditions for the Abel equationseveral classes of exact travelling wave solutions of the general reaction-diffusion equation that describes glioblastoma growth are obtained, corresponding to different forms of the product of the diffusion and reaction functions. The solutions are obtained by using the Chiellini lemma and the Lemke transformation, respectively, and the corresponding equations represent generalizations of the classical Fisher--Kolmogorov equation. The biological implications of two classes of solutions are also investigated by using both numerical and semi-analytical methods for realistic values of the biological parameters.


    [1] Cancer Letters, 298 (2010), 139-149.
    [2] American Journal of Neuroradiology, 16 (1995), 1013-1017.
    [3] Physics Letters A, 232 (1997), 200-206.
    [4] Il Nuovo Cimento, 119 (2004), 975-982.
    [5] Bollettino dell Unione Matematica Italiana, 10 (1931), 301-307.
    [6] Journal of Neuro-Oncology, 70 (2004), 217-228.
    [7] Cell Prolif., 42 (2009), 511-528.
    [8] Oxford, Oxford University Press, 1999.
    [9] Ann. Eugenics, 7 (1937), 355-369.
    [10] Journal of Membrane Science, 349 (2010), 195-207.
    [11] PLOS Computational Biology, 8 (2012), 1002556, 12pp.
    [12] preprint, arXiv:1305.5036.
    [13] Applied Mathematics and Computation, 218 (2012), 8779-8799.
    [14] Journal of differential equations, 124 (1996), 27-79.
    [15] Birkhäuser, 2004.
    [16] Deutsch. Verlag Wissenschaft., Berlin, 1958.
    [17] Computers and Mathematics with Applications, 46 (2003), 849-853.
    [18] Applied Mathematics and Computation, 236 (2014), 184-194.
    [19] Universal Journal of Applied Mathematics, 1 (2013), 101-104.
    [20] Journal of Engineering Mathematics, accepted for publication, arXiv:1302.0836.
    [21] J Neuropathol Exp Neurol, 66 (2007), 1-9.
    [22] Computers and Mathematics with Applications, 59 (2010), 2326-2339.
    [23] Mathematical Medicine and Biology, 29 (2012), 49-65.
    [24] Math. Biosci. Eng., 6 (2009), 521-546.
    [25] Magnetic Resonance in Medicine, 54 (2005), 616-624.
    [26] Composite Structures, 108 (2014), 111-118.
    [27] Journal of Neurooncology, 107 (2012), 359-364.
    [28] 43 (2008), 29-35.
    [29] Chelsea, New York, 1959.
    [30] Bulletin de l'Université d'État à Moscou, Série Internationale, Section A Mathématiques et Mécanique, 1 (1937), 1-25.
    [31] Sitzungs. Berl. Math. Ges., 18 (1920), 26-31.
    [32] Cancer, 50 (1982), 2066-2073.
    [33] Acta Neuropathol., 114 (2007), 97-109.
    [34] Computers and Mathematics with Applications, 41 (2001), 1395-1401.
    [35] Computers and Mathematics with Applications, 43 (2002), 91-94.
    [36] Physics Letters, A 377 (2013), 1234-1238.
    [37] preprint, arXiv:1301.3567.
    [38] Journal of Mathematical Physics, 54 (2013), 081502, 15pp.
    [39] Annals of Neurology, 53 (2003), 524-528.
    [40] Journal of Theoretical Biology, 353 (2014), 95-103.
    [41] Bulletin of Mathematical Biology, 74 (2012), 2875-2896.
    [42] Cell Prolif, 27 (1994), 73-94.
    [43] C. R. Biologies, 327 (2004), 995-1008.
    [44] Acta Oncologica, 48 (2009), 591-597.
    [45] Journal of Theoretical Biology, 56 (1976), 329-353.
    [46] 3rd ed, New York, NY: Springer- Verlag, 2002.
    [47] Math. Models Methods Appl. Sci., 24 (2014), 2601-2626. arXiv:1401.3649.
    [48] Chapman & Hall/CRC, Boca Raton London New York Washington, D.C., 2003.
    [49] J. Math. Biol., 58 (2009), 561-578.
    [50] Physics Letters A, 245 (1998), 527-536.
    [51] Journal of Neuro-Oncology, 10 (1991), 179-185.
    [52] Adv. Cancer Chemother., 1 (1979), 205-253.
    [53] Biophysical Journal, 81 (2001), 1868-1880.
    [54] Biophysical Journal, 92 (2007), 356-365.
    [55] Journal of the Neurological Sciences, 216 (2003), 1-10.
    [56] Can J Neurol Sci, 29 (2002), p395.
    [57] Cell Prolif., 28 (1995), 17-31.
    [58] The New England Journal of Medicine, 359 (2008), 492-507.
    [59] Nature, 413 (2001), 628-631.
    [60] Cell. Prolif., 29 (1996), 269-288.
    [61] Cancer Research, 53 (1993), 2987-2993.
  • This article has been cited by:

    1. Yang Kuang, Erica M. Rutter, Tracy L. Stepien, A data-motivated density-dependent diffusion model of in vitro glioblastoma growth, 2015, 12, 1551-0018, 1157, 10.3934/mbe.2015.12.1157
    2. Tiberiu Harko, Shi-Dong Liang, Exact solutions of the Liénard- and generalized Liénard-type ordinary nonlinear differential equations obtained by deforming the phase space coordinates of the linear harmonic oscillator, 2016, 98, 0022-0833, 93, 10.1007/s10665-015-9812-z
    3. Ayansola D. Ogundele, Andrew J. Sinclair, Subhash C. Sinha, Closed form parametric solutions of nonlinear Abel-type and Riccati-type spacecraft relative motion, 2021, 178, 00945765, 733, 10.1016/j.actaastro.2020.10.009
    4. Faezeh Iranmanesh, Mohammad Ali Nazari, Finite Element Modeling of Avascular Tumor Growth Using a Stress-Driven Model, 2017, 139, 0148-0731, 10.1115/1.4037038
    5. Waipot Ngamsaad, Suthep Suantai, Mechanically-driven spreading of bacterial populations, 2016, 35, 10075704, 88, 10.1016/j.cnsns.2015.10.026
    6. Rebecca L Klank, Steven S Rosenfeld, David J Odde, A Brownian dynamics tumor progression simulator with application to glioblastoma, 2018, 4, 2057-1739, 015001, 10.1088/2057-1739/aa9e6e
    7. Brian Wesley Williams, Exact traveling wave solutions of fast reaction–diffusion–convectionequations based on the Lambert function W, 2020, 2, 26668181, 100013, 10.1016/j.padiff.2020.100013
    8. Man Kwong Mak, Tiberiu Harko, On the Integrability of the Abel and of the Extended Liénard Equations, 2019, 35, 0168-9673, 722, 10.1007/s10255-019-0847-1
    9. Giovanni Borasi, Alan Nahum, Modelling the radiotherapy effect in the reaction-diffusion equation, 2016, 32, 11201797, 1175, 10.1016/j.ejmp.2016.08.020
    10. Prakash Kumar Das, Supriya Mandal, Madan M. Panja, Piecewise smooth localized solutions of Liénard‐type equations with application to NLSE, 2018, 41, 0170-4214, 7869, 10.1002/mma.5249
    11. Georgios S Stamatakos, Stavroula G Giatili, A Numerical Handling of the Boundary Conditions Imposed by the Skull on an Inhomogeneous Diffusion-Reaction Model of Glioblastoma Invasion Into the Brain: Clinical Validation Aspects, 2017, 16, 1176-9351, 117693511668482, 10.1177/1176935116684824
    12. Jianfeng Huang, Joan Torregrosa, Jordi Villadelprat, On the Number of Limit Cycles in Generalized Abel Equations, 2020, 19, 1536-0040, 2343, 10.1137/20M1340083
    13. T. Harko, M. K. Mak, Exact travelling wave solutions of non-linear reaction-convection-diffusion equations—An Abel equation based approach, 2015, 56, 0022-2488, 111501, 10.1063/1.4935299
    14. Jianfeng Huang, Jie Li, On the number of limit cycles in piecewise smooth generalized Abel equations with two asymmetric zones, 2022, 66, 14681218, 103551, 10.1016/j.nonrwa.2022.103551
    15. Valipuram Manoranjan, Lewa’ Alzaleq, Analysis of a population model with advection and an autocatalytic-type growth, 2023, 16, 1793-5245, 10.1142/S1793524522500784
    16. Qianqian Zhao, Jiang Yu, Cheng Wang, Nontrivial Limit Cycles in a Kind of Piecewise Smooth Generalized Abel Equation, 2022, 32, 0218-1274, 10.1142/S0218127422502169
    17. Mohammad F.M. Naser, Mohammad Abdel Aal, Ghaleb Gumah, Stability analysis of Abel's equation of the first kind, 2023, 8, 2473-6988, 30574, 10.3934/math.20231563
    18. Xiangqin Yu, Hebai Chen, Changjian Liu, The number of limit cycles of Josephson equation, 2023, 0, 1531-3492, 0, 10.3934/dcdsb.2023208
    19. Elsa Moggia, Predictive potentialities of the Quasi-Random Lattice model for electrolyte solutions, discussion and improvement strategies, 2025, 588, 03783812, 114243, 10.1016/j.fluid.2024.114243
    20. Xiangqin Yu, Jianfeng Huang, Changjian Liu, Maximum number of limit cycles for Abel equation having coefficients with linear trigonometric functions, 2024, 410, 00220396, 301, 10.1016/j.jde.2024.07.030
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3063) PDF downloads(825) Cited by(19)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog