Citation: Tiberiu Harko, Man Kwong Mak. Travelling wave solutions of the reaction-diffusion mathematical model of glioblastoma growth: An Abel equation based approach[J]. Mathematical Biosciences and Engineering, 2015, 12(1): 41-69. doi: 10.3934/mbe.2015.12.41
[1] | Ardak Kashkynbayev, Yerlan Amanbek, Bibinur Shupeyeva, Yang Kuang . Existence of traveling wave solutions to data-driven glioblastoma multiforme growth models with density-dependent diffusion. Mathematical Biosciences and Engineering, 2020, 17(6): 7234-7247. doi: 10.3934/mbe.2020371 |
[2] | M. B. A. Mansour . Computation of traveling wave fronts for a nonlinear diffusion-advection model. Mathematical Biosciences and Engineering, 2009, 6(1): 83-91. doi: 10.3934/mbe.2009.6.83 |
[3] | Blessing O. Emerenini, Stefanie Sonner, Hermann J. Eberl . Mathematical analysis of a quorum sensing induced biofilm dispersal model and numerical simulation of hollowing effects. Mathematical Biosciences and Engineering, 2017, 14(3): 625-653. doi: 10.3934/mbe.2017036 |
[4] | Maryam Basiri, Frithjof Lutscher, Abbas Moameni . Traveling waves in a free boundary problem for the spread of ecosystem engineers. Mathematical Biosciences and Engineering, 2025, 22(1): 152-184. doi: 10.3934/mbe.2025008 |
[5] | Tracy L. Stepien, Erica M. Rutter, Yang Kuang . A data-motivated density-dependent diffusion model of in vitro glioblastoma growth. Mathematical Biosciences and Engineering, 2015, 12(6): 1157-1172. doi: 10.3934/mbe.2015.12.1157 |
[6] | Nicolas Ratto, Martine Marion, Vitaly Volpert . Existence of pulses for a reaction-diffusion system of blood coagulation in flow. Mathematical Biosciences and Engineering, 2019, 16(5): 4196-4212. doi: 10.3934/mbe.2019209 |
[7] | Dong Liang, Jianhong Wu, Fan Zhang . Modelling Population Growth with Delayed Nonlocal Reaction in 2-Dimensions. Mathematical Biosciences and Engineering, 2005, 2(1): 111-132. doi: 10.3934/mbe.2005.2.111 |
[8] | Christopher DuBois, Jesse Farnham, Eric Aaron, Ami Radunskaya . A multiple time-scale computational model of a tumor and its micro environment. Mathematical Biosciences and Engineering, 2013, 10(1): 121-150. doi: 10.3934/mbe.2013.10.121 |
[9] | Xixia Ma, Rongsong Liu, Liming Cai . Stability of traveling wave solutions for a nonlocal Lotka-Volterra model. Mathematical Biosciences and Engineering, 2024, 21(1): 444-473. doi: 10.3934/mbe.2024020 |
[10] | Zhilan Feng, Wenzhang Huang, Donald L. DeAngelis . Spatially heterogeneous invasion of toxic plant mediated by herbivory. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1519-1538. doi: 10.3934/mbe.2013.10.1519 |
[1] | Cancer Letters, 298 (2010), 139-149. |
[2] | American Journal of Neuroradiology, 16 (1995), 1013-1017. |
[3] | Physics Letters A, 232 (1997), 200-206. |
[4] | Il Nuovo Cimento, 119 (2004), 975-982. |
[5] | Bollettino dell Unione Matematica Italiana, 10 (1931), 301-307. |
[6] | Journal of Neuro-Oncology, 70 (2004), 217-228. |
[7] | Cell Prolif., 42 (2009), 511-528. |
[8] | Oxford, Oxford University Press, 1999. |
[9] | Ann. Eugenics, 7 (1937), 355-369. |
[10] | Journal of Membrane Science, 349 (2010), 195-207. |
[11] | PLOS Computational Biology, 8 (2012), 1002556, 12pp. |
[12] | preprint, arXiv:1305.5036. |
[13] | Applied Mathematics and Computation, 218 (2012), 8779-8799. |
[14] | Journal of differential equations, 124 (1996), 27-79. |
[15] | Birkhäuser, 2004. |
[16] | Deutsch. Verlag Wissenschaft., Berlin, 1958. |
[17] | Computers and Mathematics with Applications, 46 (2003), 849-853. |
[18] | Applied Mathematics and Computation, 236 (2014), 184-194. |
[19] | Universal Journal of Applied Mathematics, 1 (2013), 101-104. |
[20] | Journal of Engineering Mathematics, accepted for publication, arXiv:1302.0836. |
[21] | J Neuropathol Exp Neurol, 66 (2007), 1-9. |
[22] | Computers and Mathematics with Applications, 59 (2010), 2326-2339. |
[23] | Mathematical Medicine and Biology, 29 (2012), 49-65. |
[24] | Math. Biosci. Eng., 6 (2009), 521-546. |
[25] | Magnetic Resonance in Medicine, 54 (2005), 616-624. |
[26] | Composite Structures, 108 (2014), 111-118. |
[27] | Journal of Neurooncology, 107 (2012), 359-364. |
[28] | 43 (2008), 29-35. |
[29] | Chelsea, New York, 1959. |
[30] | Bulletin de l'Université d'État à Moscou, Série Internationale, Section A Mathématiques et Mécanique, 1 (1937), 1-25. |
[31] | Sitzungs. Berl. Math. Ges., 18 (1920), 26-31. |
[32] | Cancer, 50 (1982), 2066-2073. |
[33] | Acta Neuropathol., 114 (2007), 97-109. |
[34] | Computers and Mathematics with Applications, 41 (2001), 1395-1401. |
[35] | Computers and Mathematics with Applications, 43 (2002), 91-94. |
[36] | Physics Letters, A 377 (2013), 1234-1238. |
[37] | preprint, arXiv:1301.3567. |
[38] | Journal of Mathematical Physics, 54 (2013), 081502, 15pp. |
[39] | Annals of Neurology, 53 (2003), 524-528. |
[40] | Journal of Theoretical Biology, 353 (2014), 95-103. |
[41] | Bulletin of Mathematical Biology, 74 (2012), 2875-2896. |
[42] | Cell Prolif, 27 (1994), 73-94. |
[43] | C. R. Biologies, 327 (2004), 995-1008. |
[44] | Acta Oncologica, 48 (2009), 591-597. |
[45] | Journal of Theoretical Biology, 56 (1976), 329-353. |
[46] | 3rd ed, New York, NY: Springer- Verlag, 2002. |
[47] | Math. Models Methods Appl. Sci., 24 (2014), 2601-2626. arXiv:1401.3649. |
[48] | Chapman & Hall/CRC, Boca Raton London New York Washington, D.C., 2003. |
[49] | J. Math. Biol., 58 (2009), 561-578. |
[50] | Physics Letters A, 245 (1998), 527-536. |
[51] | Journal of Neuro-Oncology, 10 (1991), 179-185. |
[52] | Adv. Cancer Chemother., 1 (1979), 205-253. |
[53] | Biophysical Journal, 81 (2001), 1868-1880. |
[54] | Biophysical Journal, 92 (2007), 356-365. |
[55] | Journal of the Neurological Sciences, 216 (2003), 1-10. |
[56] | Can J Neurol Sci, 29 (2002), p395. |
[57] | Cell Prolif., 28 (1995), 17-31. |
[58] | The New England Journal of Medicine, 359 (2008), 492-507. |
[59] | Nature, 413 (2001), 628-631. |
[60] | Cell. Prolif., 29 (1996), 269-288. |
[61] | Cancer Research, 53 (1993), 2987-2993. |
1. | Yang Kuang, Erica M. Rutter, Tracy L. Stepien, A data-motivated density-dependent diffusion model of in vitro glioblastoma growth, 2015, 12, 1551-0018, 1157, 10.3934/mbe.2015.12.1157 | |
2. | Tiberiu Harko, Shi-Dong Liang, Exact solutions of the Liénard- and generalized Liénard-type ordinary nonlinear differential equations obtained by deforming the phase space coordinates of the linear harmonic oscillator, 2016, 98, 0022-0833, 93, 10.1007/s10665-015-9812-z | |
3. | Ayansola D. Ogundele, Andrew J. Sinclair, Subhash C. Sinha, Closed form parametric solutions of nonlinear Abel-type and Riccati-type spacecraft relative motion, 2021, 178, 00945765, 733, 10.1016/j.actaastro.2020.10.009 | |
4. | Faezeh Iranmanesh, Mohammad Ali Nazari, Finite Element Modeling of Avascular Tumor Growth Using a Stress-Driven Model, 2017, 139, 0148-0731, 10.1115/1.4037038 | |
5. | Waipot Ngamsaad, Suthep Suantai, Mechanically-driven spreading of bacterial populations, 2016, 35, 10075704, 88, 10.1016/j.cnsns.2015.10.026 | |
6. | Rebecca L Klank, Steven S Rosenfeld, David J Odde, A Brownian dynamics tumor progression simulator with application to glioblastoma, 2018, 4, 2057-1739, 015001, 10.1088/2057-1739/aa9e6e | |
7. | Brian Wesley Williams, Exact traveling wave solutions of fast reaction–diffusion–convectionequations based on the Lambert function W, 2020, 2, 26668181, 100013, 10.1016/j.padiff.2020.100013 | |
8. | Man Kwong Mak, Tiberiu Harko, On the Integrability of the Abel and of the Extended Liénard Equations, 2019, 35, 0168-9673, 722, 10.1007/s10255-019-0847-1 | |
9. | Giovanni Borasi, Alan Nahum, Modelling the radiotherapy effect in the reaction-diffusion equation, 2016, 32, 11201797, 1175, 10.1016/j.ejmp.2016.08.020 | |
10. | Prakash Kumar Das, Supriya Mandal, Madan M. Panja, Piecewise smooth localized solutions of Liénard‐type equations with application to NLSE, 2018, 41, 0170-4214, 7869, 10.1002/mma.5249 | |
11. | Georgios S Stamatakos, Stavroula G Giatili, A Numerical Handling of the Boundary Conditions Imposed by the Skull on an Inhomogeneous Diffusion-Reaction Model of Glioblastoma Invasion Into the Brain: Clinical Validation Aspects, 2017, 16, 1176-9351, 117693511668482, 10.1177/1176935116684824 | |
12. | Jianfeng Huang, Joan Torregrosa, Jordi Villadelprat, On the Number of Limit Cycles in Generalized Abel Equations, 2020, 19, 1536-0040, 2343, 10.1137/20M1340083 | |
13. | T. Harko, M. K. Mak, Exact travelling wave solutions of non-linear reaction-convection-diffusion equations—An Abel equation based approach, 2015, 56, 0022-2488, 111501, 10.1063/1.4935299 | |
14. | Jianfeng Huang, Jie Li, On the number of limit cycles in piecewise smooth generalized Abel equations with two asymmetric zones, 2022, 66, 14681218, 103551, 10.1016/j.nonrwa.2022.103551 | |
15. | Valipuram Manoranjan, Lewa’ Alzaleq, Analysis of a population model with advection and an autocatalytic-type growth, 2023, 16, 1793-5245, 10.1142/S1793524522500784 | |
16. | Qianqian Zhao, Jiang Yu, Cheng Wang, Nontrivial Limit Cycles in a Kind of Piecewise Smooth Generalized Abel Equation, 2022, 32, 0218-1274, 10.1142/S0218127422502169 | |
17. | Mohammad F.M. Naser, Mohammad Abdel Aal, Ghaleb Gumah, Stability analysis of Abel's equation of the first kind, 2023, 8, 2473-6988, 30574, 10.3934/math.20231563 | |
18. | Xiangqin Yu, Hebai Chen, Changjian Liu, The number of limit cycles of Josephson equation, 2023, 0, 1531-3492, 0, 10.3934/dcdsb.2023208 | |
19. | Elsa Moggia, Predictive potentialities of the Quasi-Random Lattice model for electrolyte solutions, discussion and improvement strategies, 2025, 588, 03783812, 114243, 10.1016/j.fluid.2024.114243 | |
20. | Xiangqin Yu, Jianfeng Huang, Changjian Liu, Maximum number of limit cycles for Abel equation having coefficients with linear trigonometric functions, 2024, 410, 00220396, 301, 10.1016/j.jde.2024.07.030 |