Construction of Lyapunov functions for some models of infectious diseases in vivo: From simple models to complex models

  • Received: 01 March 2014 Accepted: 29 June 2018 Published: 01 December 2014
  • MSC : Primary: 92B05, 92D25; Secondary: 34D23.

  • We present a constructive method for Lyapunov functions forordinary differential equation models of infectious diseases in vivo.We consider models derived from the Nowak-Bangham models. We construct Lyapunov functions for complex models using thoseof simpler models. Especially, we construct Lyapunov functions for modelswith an immune variable from those for models without an immunevariable, a Lyapunov functions of a model with absorption effectfrom that for a model without absorption effect. We make theconstruction clear for Lyapunov functions proposed previously, andpresent new results with our method.

    Citation: Tsuyoshi Kajiwara, Toru Sasaki, Yasuhiro Takeuchi. Construction of Lyapunov functions for some models of infectious diseases in vivo: From simple models to complex models[J]. Mathematical Biosciences and Engineering, 2015, 12(1): 117-133. doi: 10.3934/mbe.2015.12.117

    Related Papers:

    [1] Haijun Hu, Xupu Yuan, Lihong Huang, Chuangxia Huang . Global dynamics of an SIRS model with demographics and transfer from infectious to susceptible on heterogeneous networks. Mathematical Biosciences and Engineering, 2019, 16(5): 5729-5749. doi: 10.3934/mbe.2019286
    [2] Yan-Xia Dang, Zhi-Peng Qiu, Xue-Zhi Li, Maia Martcheva . Global dynamics of a vector-host epidemic model with age of infection. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1159-1186. doi: 10.3934/mbe.2017060
    [3] Xing Zhang, Zhitao Li, Lixin Gao . Stability analysis of a SAIR epidemic model on scale-free community networks. Mathematical Biosciences and Engineering, 2024, 21(3): 4648-4668. doi: 10.3934/mbe.2024204
    [4] Sara Y. Del Valle, J. M. Hyman, Nakul Chitnis . Mathematical models of contact patterns between age groups for predicting the spread of infectious diseases. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1475-1497. doi: 10.3934/mbe.2013.10.1475
    [5] Jinliang Wang, Ran Zhang, Toshikazu Kuniya . A note on dynamics of an age-of-infection cholera model. Mathematical Biosciences and Engineering, 2016, 13(1): 227-247. doi: 10.3934/mbe.2016.13.227
    [6] C. Connell McCluskey . Global stability for an $SEI$ model of infectious disease with age structure and immigration of infecteds. Mathematical Biosciences and Engineering, 2016, 13(2): 381-400. doi: 10.3934/mbe.2015008
    [7] Yifan Xing, Hong-Xu Li . Almost periodic solutions for a SVIR epidemic model with relapse. Mathematical Biosciences and Engineering, 2021, 18(6): 7191-7217. doi: 10.3934/mbe.2021356
    [8] Maria Guadalupe Vazquez-Peña, Cruz Vargas-De-León, Jorge Velázquez-Castro . Global stability for a mosquito-borne disease model with continuous-time age structure in the susceptible and relapsed host classes. Mathematical Biosciences and Engineering, 2024, 21(11): 7582-7600. doi: 10.3934/mbe.2024333
    [9] Andrey V. Melnik, Andrei Korobeinikov . Lyapunov functions and global stability for SIR and SEIR models withage-dependent susceptibility. Mathematical Biosciences and Engineering, 2013, 10(2): 369-378. doi: 10.3934/mbe.2013.10.369
    [10] Andrey V. Melnik, Andrei Korobeinikov . Global asymptotic properties of staged models with multiple progression pathways for infectious diseases. Mathematical Biosciences and Engineering, 2011, 8(4): 1019-1034. doi: 10.3934/mbe.2011.8.1019
  • We present a constructive method for Lyapunov functions forordinary differential equation models of infectious diseases in vivo.We consider models derived from the Nowak-Bangham models. We construct Lyapunov functions for complex models using thoseof simpler models. Especially, we construct Lyapunov functions for modelswith an immune variable from those for models without an immunevariable, a Lyapunov functions of a model with absorption effectfrom that for a model without absorption effect. We make theconstruction clear for Lyapunov functions proposed previously, andpresent new results with our method.


    [1] Bull. Math. Biol., 72 (2010), 681-696.
    [2] SIAM J. Appl. Math., 70 (2010), 2693-2708.
    [3] SIAM J. Appl. Math., 67 (2006), 260-278.
    [4] J. Biol. Dyn., 4 (2010), 282-295.
    [5] J. Biol Dyn. , 4 (2010), 258-269.
    [6] Nonl. Anal. RWA, 13 (2012), 1802-1826.
    [7] Bull. Math. Biol., 66 (2004), 879-883.
    [8] Bull. Math. Biol., 69 (2007), 1871-1886.
    [9] J. Diff. Eq., 248 (2010), 1-20.
    [10] J. Math. Biol., 65 (2012), 181-199.
    [11] J. Math. Biol., 51 (2005), 247-267.
    [12] Science, 272 (1996), 74-79.
    [13] Southwest China Normal Univ., 30 (2005), 797-799.
    [14] Math. Biosc., 224 (2010), 118-125.
  • This article has been cited by:

    1. Yu Yang, Jinling Zhou, Global stability of a discrete virus dynamics model with diffusion and general infection function, 2019, 96, 0020-7160, 1752, 10.1080/00207160.2018.1527028
    2. Yoji Otani, Tsuyoshi Kajiwara, Toru Sasaki, Lyapunov functionals for multistrain models with infinite delay, 2017, 22, 1553-524X, 507, 10.3934/dcdsb.2017025
    3. Yoji Otani, Tsuyoshi Kajiwara, Toru Sasaki, Lyapunov functionals for virus-immune models with infinite delay, 2015, 20, 1531-3492, 3093, 10.3934/dcdsb.2015.20.3093
    4. Tsuyoshi Kajiwara, Toru Sasaki, Yoji Otani, Global stability for an age-structured multistrain virus dynamics model with humoral immunity, 2020, 62, 1598-5865, 239, 10.1007/s12190-019-01283-w
    5. Tsuyoshi Kajiwara, Toru Sasaki, Yoji Otani, Global stability of an age-structured model for pathogen–immune interaction, 2019, 59, 1598-5865, 631, 10.1007/s12190-018-1194-8
    6. Yongqi Liu, Xuanliang Liu, Global properties and bifurcation analysis of an HIV-1 infection model with two target cells, 2018, 37, 0101-8205, 3455, 10.1007/s40314-017-0523-0
    7. Hiroshi Ito, 2021, Vaccination with Input-to-State Stability for SIR Model of Epidemics, 978-1-6654-3659-5, 2812, 10.1109/CDC45484.2021.9683439
    8. Tingting Xue, Xiaolin Fan, Zhiguo Chang, Dynamics of a stochastic SIRS epidemic model with standard incidence and vaccination, 2022, 19, 1551-0018, 10618, 10.3934/mbe.2022496
    9. Tsuyoshi Kajiwara, Toru Sasaki, Yoji Otani, Global stability of an age-structured infection model in vivo with two compartments and two routes, 2022, 19, 1551-0018, 11047, 10.3934/mbe.2022515
    10. Hiroshi Ito, A Construction of Strict Lyapunov Functions for A Bilinear Balancing Model, 2021, 54, 24058963, 161, 10.1016/j.ifacol.2021.10.346
    11. Toru Sasaki, Tsuyoshi Kajiwara, Yoji Otani, Yuki Ishimaru, Effects That Cause the Instability of the Positive Equilibrium for Simple Pathogen Dynamics Models, 2024, 67, 0532-8721, 327, 10.1619/fesi.67.327
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2740) PDF downloads(655) Cited by(11)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog