Antibiotic cycling versus mixing: The difficulty of using mathematical models to definitively quantify their relative merits

  • Received: 01 September 2010 Accepted: 29 June 2018 Published: 01 October 2010
  • MSC : 93C15, 92B05.

  • We ask the question Which antibiotic deployment protocols select best against drug-resistant microbes: mixing or periodic cycling? and demonstrate that the statistical distribution of the performances of both sets of protocols, mixing and periodic cycling, must have overlapping supports. In other words, it is a general, mathematical result that there must be mixing policies that outperform cycling policies and vice versa.
       As a result, we agree with the tenet of Bonhoefer et al. [1] that one should not apply the results of [2] to conclude that an antibiotic cycling policy that implements cycles of drug restriction and prioritisation on an ad-hoc basis can select against drug-resistant microbial pathogens in a clinical setting any better than random drug use. However, nor should we conclude that a random, per-patient drug-assignment protocol is the de facto optimal method for allocating antibiotics to patients in any general sense.

    Citation: Robert E. Beardmore, Rafael Peña-Miller. Antibiotic cycling versus mixing: The difficulty of using mathematicalmodels to definitively quantify their relative merits[J]. Mathematical Biosciences and Engineering, 2010, 7(4): 923-933. doi: 10.3934/mbe.2010.7.923

    Related Papers:

    [1] Xiaxia Kang, Jie Yan, Fan Huang, Ling Yang . On the mechanism of antibiotic resistance and fecal microbiota transplantation. Mathematical Biosciences and Engineering, 2019, 16(6): 7057-7084. doi: 10.3934/mbe.2019354
    [2] Robert E. Beardmore, Rafael Peña-Miller . Rotating antibiotics selects optimally against antibiotic resistance, in theory. Mathematical Biosciences and Engineering, 2010, 7(3): 527-552. doi: 10.3934/mbe.2010.7.527
    [3] Jing Jia, Yanfeng Zhao, Zhong Zhao, Bing Liu, Xinyu Song, Yuanxian Hui . Dynamics of a within-host drug resistance model with impulsive state feedback control. Mathematical Biosciences and Engineering, 2023, 20(2): 2219-2231. doi: 10.3934/mbe.2023103
    [4] Michele L. Joyner, Cammey C. Manning, Brandi N. Canter . Modeling the effects of introducing a new antibiotic in a hospital setting: A case study. Mathematical Biosciences and Engineering, 2012, 9(3): 601-625. doi: 10.3934/mbe.2012.9.601
    [5] Colette Calmelet, John Hotchkiss, Philip Crooke . A mathematical model for antibiotic control of bacteria in peritoneal dialysis associated peritonitis. Mathematical Biosciences and Engineering, 2014, 11(6): 1449-1464. doi: 10.3934/mbe.2014.11.1449
    [6] Avner Friedman, Najat Ziyadi, Khalid Boushaba . A model of drug resistance with infection by health care workers. Mathematical Biosciences and Engineering, 2010, 7(4): 779-792. doi: 10.3934/mbe.2010.7.779
    [7] Qimin Huang, Mary Ann Horn, Shigui Ruan . Modeling the effect of antibiotic exposure on the transmission of methicillin-resistant Staphylococcus aureus in hospitals with environmental contamination. Mathematical Biosciences and Engineering, 2019, 16(5): 3641-3673. doi: 10.3934/mbe.2019181
    [8] Hermann Mena, Lena-Maria Pfurtscheller, Jhoana P. Romero-Leiton . Random perturbations in a mathematical model of bacterial resistance: Analysis and optimal control. Mathematical Biosciences and Engineering, 2020, 17(5): 4477-4499. doi: 10.3934/mbe.2020247
    [9] Michele L. Joyner, Cammey Cole Manning, Whitney Forbes, Valerie Bobola, William Frazier . Modeling Ertapenem: the impact of body mass index on distribution of the antibiotic in the body. Mathematical Biosciences and Engineering, 2019, 16(2): 713-726. doi: 10.3934/mbe.2019034
    [10] Xiaoxiao Yan, Zhong Zhao, Yuanxian Hui, Jingen Yang . Dynamic analysis of a bacterial resistance model with impulsive state feedback control. Mathematical Biosciences and Engineering, 2023, 20(12): 20422-20436. doi: 10.3934/mbe.2023903
  • We ask the question Which antibiotic deployment protocols select best against drug-resistant microbes: mixing or periodic cycling? and demonstrate that the statistical distribution of the performances of both sets of protocols, mixing and periodic cycling, must have overlapping supports. In other words, it is a general, mathematical result that there must be mixing policies that outperform cycling policies and vice versa.
       As a result, we agree with the tenet of Bonhoefer et al. [1] that one should not apply the results of [2] to conclude that an antibiotic cycling policy that implements cycles of drug restriction and prioritisation on an ad-hoc basis can select against drug-resistant microbial pathogens in a clinical setting any better than random drug use. However, nor should we conclude that a random, per-patient drug-assignment protocol is the de facto optimal method for allocating antibiotics to patients in any general sense.


  • This article has been cited by:

    1. Christiane P. Goulart, Mentar Mahmudi, Kristina A. Crona, Stephen D. Jacobs, Marcelo Kallmann, Barry G. Hall, Devin C. Greene, Miriam Barlow, Norman Johnson, Designing Antibiotic Cycling Strategies by Determining and Understanding Local Adaptive Landscapes, 2013, 8, 1932-6203, e56040, 10.1371/journal.pone.0056040
    2. Nicolas Houy, Julien Flaig, Optimal dynamic empirical therapy in a health care facility: A Monte-Carlo look-ahead method, 2021, 198, 01692607, 105767, 10.1016/j.cmpb.2020.105767
    3. Mato Lagator, Tom Vogwill, Andrew Mead, Nick Colegrave, Paul Neve, Herbicide mixtures at high doses slow the evolution of resistance in experimentally evolving populations ofChlamydomonas reinhardtii, 2013, 198, 0028646X, 938, 10.1111/nph.12195
    4. A. M. Bal, A. Kumar, I. M. Gould, Antibiotic heterogeneity: from concept to practice, 2010, 1213, 00778923, 81, 10.1111/j.1749-6632.2010.05867.x
    5. Nicolas Houy, Julien Flaig, Hospital-wide surveillance-based antimicrobial treatments: a Monte-Carlo look-ahead method, 2021, 01692607, 106050, 10.1016/j.cmpb.2021.106050
    6. Rafael Cantón, Patricia Ruiz-Garbajosa, Co-resistance: an opportunity for the bacteria and resistance genes, 2011, 11, 14714892, 477, 10.1016/j.coph.2011.07.007
    7. Tamar F. Barlam, Sara E. Cosgrove, Lilian M. Abbo, Conan MacDougall, Audrey N. Schuetz, Edward J. Septimus, Arjun Srinivasan, Timothy H. Dellit, Yngve T. Falck-Ytter, Neil O. Fishman, Cindy W. Hamilton, Timothy C. Jenkins, Pamela A. Lipsett, Preeti N. Malani, Larissa S. May, Gregory J. Moran, Melinda M. Neuhauser, Jason G. Newland, Christopher A. Ohl, Matthew H. Samore, Susan K. Seo, Kavita K. Trivedi, Implementing an Antibiotic Stewardship Program: Guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America, 2016, 62, 1537-6591, e51, 10.1093/cid/ciw118
    8. Pia Abel zur Wiesch, Roger Kouyos, Sören Abel, Wolfgang Viechtbauer, Sebastian Bonhoeffer, Claus O. Wilke, Cycling Empirical Antibiotic Therapy in Hospitals: Meta-Analysis and Models, 2014, 10, 1553-7374, e1004225, 10.1371/journal.ppat.1004225
    9. Ronald S. Chamberlain, Brian J. Shayota, Carl Nyberg, Prasanna Sridharan, The Utility of Procalcitonin as a Biomarker to Limit the Duration of Antibiotic Therapy in Adult Sepsis Patients, 2014, 05, 2157-9407, 342, 10.4236/ss.2014.58057
    10. Nienke L Plantinga, Bastiaan HJ Wittekamp, Pleun J van Duijn, Marc JM Bonten, Fighting antibiotic resistance in the intensive care unit using antibiotics, 2015, 10, 1746-0913, 391, 10.2217/fmb.14.146
    11. Andrew N. Ginn, Agnieszka M. Wiklendt, Heather F. Gidding, Narelle George, James S. O’Driscoll, Sally R. Partridge, Brian I. O’Toole, Rita A. Perri, Joan Faoagali, John E. Gallagher, Jeffrey Lipman, Jonathan R. Iredell, Stefan Bereswill, The Ecology of Antibiotic Use in the ICU: Homogeneous Prescribing of Cefepime but Not Tazocin Selects for Antibiotic Resistant Infection, 2012, 7, 1932-6203, e38719, 10.1371/journal.pone.0038719
    12. Daniel Nichol, Peter Jeavons, Alexander G. Fletcher, Robert A. Bonomo, Philip K. Maini, Jerome L. Paul, Robert A. Gatenby, Alexander R.A. Anderson, Jacob G. Scott, Rustom Antia, Steering Evolution with Sequential Therapy to Prevent the Emergence of Bacterial Antibiotic Resistance, 2015, 11, 1553-7358, e1004493, 10.1371/journal.pcbi.1004493
    13. François Blanquart, Evolutionary epidemiology models to predict the dynamics of antibiotic resistance, 2019, 12, 1752-4571, 365, 10.1111/eva.12753
    14. Portia M. Mira, Kristina Crona, Devin Greene, Juan C. Meza, Bernd Sturmfels, Miriam Barlow, Paul J Planet, Rational Design of Antibiotic Treatment Plans: A Treatment Strategy for Managing Evolution and Reversing Resistance, 2015, 10, 1932-6203, e0122283, 10.1371/journal.pone.0122283
    15. D. E. Ramsay, J. Invik, S. L. Checkley, S. P. Gow, N. D. Osgood, C. L. Waldner, Application of dynamic modelling techniques to the problem of antibacterial use and resistance: a scoping review, 2018, 146, 0950-2688, 2014, 10.1017/S0950268818002091
    16. Roger D. Kouyos, Pia Abel zur Wiesch, Sebastian Bonhoeffer, Christophe Fraser, Informed Switching Strongly Decreases the Prevalence of Antibiotic Resistance in Hospital Wards, 2011, 7, 1553-7358, e1001094, 10.1371/journal.pcbi.1001094
    17. Gabriel G. Perron, Sergey Kryazhimskiy, Daniel P. Rice, Angus Buckling, Multidrug Therapy and Evolution of Antibiotic Resistance: When Order Matters, 2012, 78, 0099-2240, 6137, 10.1128/AEM.01078-12
    18. Antonio L. C. Gomes, James E. Galagan, Daniel Segrè, James M. McCaw, Resource Competition May Lead to Effective Treatment of Antibiotic Resistant Infections, 2013, 8, 1932-6203, e80775, 10.1371/journal.pone.0080775
    19. Tiago Antao, Ian Hastings, Policy options for deploying anti-malarial drugs in endemic countries: a population genetics approach, 2012, 11, 1475-2875, 10.1186/1475-2875-11-422
    20. Seungsoo Kim, Tami D. Lieberman, Roy Kishony, Alternating antibiotic treatments constrain evolutionary paths to multidrug resistance, 2014, 111, 0027-8424, 14494, 10.1073/pnas.1409800111
    21. Chang-Ro Lee, Ill Cho, Byeong Jeong, Sang Lee, Strategies to Minimize Antibiotic Resistance, 2013, 10, 1660-4601, 4274, 10.3390/ijerph10094274
    22. Hildegard Uecker, Sebastian Bonhoeffer, Antibiotic treatment protocols revisited: the challenges of a conclusive assessment by mathematical modelling, 2021, 18, 1742-5662, 20210308, 10.1098/rsif.2021.0308
    23. David V McLeod, Sylvain Gandon, Understanding the evolution of multiple drug resistance in structured populations, 2021, 10, 2050-084X, 10.7554/eLife.65645
    24. Alastair Jamieson-Lane, Alexander Friedrich, Bernd Blasius, Comparing optimization criteria in antibiotic allocation protocols, 2022, 9, 2054-5703, 10.1098/rsos.220181
  • Reader Comments
  • © 2010 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3068) PDF downloads(570) Cited by(24)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog