Feedback regulation in multistage cell lineages

  • Received: 01 August 2008 Accepted: 29 June 2018 Published: 01 December 2008
  • MSC : 92C15,92C37,34D23

  • Studies of developing and self-renewing tissues have shown that differentiated cell types are typically specified through the actions of multistage cell lineages. Such lineages commonly include a stem cell and multiple progenitor (transit amplifying; TA) cell stages, which ultimately give rise to terminally differentiated (TD) cells. In several cases, self-renewal and differentiation of stem and progenitor cells within such lineages have been shown to be under feedback regulation. Together, the existence of multiple cell stages within a lineage and complex feedback regulation are thought to confer upon a tissue the ability to autoregulate development and regeneration, in terms of both cell number (total tissue volume) and cell identity (the proportions of different cell types, especially TD cells, within the tissue). In this paper, we model neurogenesis in the olfactory epithelium (OE) of the mouse, a system in which the lineage stages and mediators of feedback regulation that govern the generation of terminally differentiated olfactory receptor neurons (ORNs) have been the subject of much experimental work. Here we report on the existence and uniqueness of steady states in this system, as well as local and global stability of these steady states. In particular, we identify parameter conditions for the stability of the system when negative feedback loops are represented either as Hill functions, or in more general terms. Our results suggest that two factors -- autoregulation of the proliferation of transit amplifying (TA) progenitor cells, and a low death rate of TD cells -- enhance the stability of this system.

    Citation: Wing-Cheong Lo, Ching-Shan Chou, Kimberly K. Gokoffski, Frederic Y.-M. Wan, Arthur D. Lander, Anne L. Calof, Qing Nie. Feedback regulation in multistage cell lineages[J]. Mathematical Biosciences and Engineering, 2009, 6(1): 59-82. doi: 10.3934/mbe.2009.6.59

    Related Papers:

    [1] Qiaojun Situ, Jinzhi Lei . A mathematical model of stem cell regeneration with epigenetic state transitions. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1379-1397. doi: 10.3934/mbe.2017071
    [2] Awatif Jahman Alqarni, Azmin Sham Rambely, Sana Abdulkream Alharbi, Ishak Hashim . Dynamic behavior and stabilization of brain cell reconstitution after stroke under the proliferation and differentiation processes for stem cells. Mathematical Biosciences and Engineering, 2021, 18(5): 6288-6304. doi: 10.3934/mbe.2021314
    [3] J. Ignacio Tello . On a mathematical model of tumor growth based on cancer stem cells. Mathematical Biosciences and Engineering, 2013, 10(1): 263-278. doi: 10.3934/mbe.2013.10.263
    [4] Katrine O. Bangsgaard, Morten Andersen, Vibe Skov, Lasse Kjær, Hans C. Hasselbalch, Johnny T. Ottesen . Dynamics of competing heterogeneous clones in blood cancers explains multiple observations - a mathematical modeling approach. Mathematical Biosciences and Engineering, 2020, 17(6): 7645-7670. doi: 10.3934/mbe.2020389
    [5] Jose E. Zamora Alvarado, Kara E. McCloskey, Ajay Gopinathan . Migration and proliferation drive the emergence of patterns in co-cultures of differentiating vascular progenitor cells. Mathematical Biosciences and Engineering, 2024, 21(8): 6731-6757. doi: 10.3934/mbe.2024295
    [6] Orit Lavi, Doron Ginsberg, Yoram Louzoun . Regulation of modular Cyclin and CDK feedback loops by an E2F transcription oscillator in the mammalian cell cycle. Mathematical Biosciences and Engineering, 2011, 8(2): 445-461. doi: 10.3934/mbe.2011.8.445
    [7] Samantha L Elliott, Emek Kose, Allison L Lewis, Anna E Steinfeld, Elizabeth A Zollinger . Modeling the stem cell hypothesis: Investigating the effects of cancer stem cells and TGF−β on tumor growth. Mathematical Biosciences and Engineering, 2019, 16(6): 7177-7194. doi: 10.3934/mbe.2019360
    [8] Alastair D. Jamieson-Lane, Bernd Blasius . The gossip paradox: Why do bacteria share genes?. Mathematical Biosciences and Engineering, 2022, 19(6): 5482-5508. doi: 10.3934/mbe.2022257
    [9] Yue Liu, Wing-Cheong Lo . Analysis of spontaneous emergence of cell polarity with delayed negative feedback. Mathematical Biosciences and Engineering, 2019, 16(3): 1392-1413. doi: 10.3934/mbe.2019068
    [10] Dasong Huang, Ruiqi Wang . Exploring the mechanism of pancreatic cell fate decisions via cell-cell communication. Mathematical Biosciences and Engineering, 2021, 18(3): 2401-2424. doi: 10.3934/mbe.2021122
  • Studies of developing and self-renewing tissues have shown that differentiated cell types are typically specified through the actions of multistage cell lineages. Such lineages commonly include a stem cell and multiple progenitor (transit amplifying; TA) cell stages, which ultimately give rise to terminally differentiated (TD) cells. In several cases, self-renewal and differentiation of stem and progenitor cells within such lineages have been shown to be under feedback regulation. Together, the existence of multiple cell stages within a lineage and complex feedback regulation are thought to confer upon a tissue the ability to autoregulate development and regeneration, in terms of both cell number (total tissue volume) and cell identity (the proportions of different cell types, especially TD cells, within the tissue). In this paper, we model neurogenesis in the olfactory epithelium (OE) of the mouse, a system in which the lineage stages and mediators of feedback regulation that govern the generation of terminally differentiated olfactory receptor neurons (ORNs) have been the subject of much experimental work. Here we report on the existence and uniqueness of steady states in this system, as well as local and global stability of these steady states. In particular, we identify parameter conditions for the stability of the system when negative feedback loops are represented either as Hill functions, or in more general terms. Our results suggest that two factors -- autoregulation of the proliferation of transit amplifying (TA) progenitor cells, and a low death rate of TD cells -- enhance the stability of this system.


  • This article has been cited by:

    1. Eliedonna Cacao, Francis A. Cucinotta, Modeling Impaired Hippocampal Neurogenesis after Radiation Exposure, 2016, 185, 0033-7587, 319, 10.1667/RR14289.S1
    2. Zheng Sun, Natalia L. Komarova, Stochastic control of proliferation and differentiation in stem cell dynamics, 2015, 71, 0303-6812, 883, 10.1007/s00285-014-0835-2
    3. Arjen van Ooyen, Using theoretical models to analyse neural development, 2011, 12, 1471-003X, 311, 10.1038/nrn3031
    4. Yutong Sha, Shuxiong Wang, Federico Bocci, Peijie Zhou, Qing Nie, Inference of Intercellular Communications and Multilayer Gene-Regulations of Epithelial–Mesenchymal Transition From Single-Cell Transcriptomic Data, 2021, 11, 1664-8021, 10.3389/fgene.2020.604585
    5. Gentian Buzi, Arthur D Lander, Mustafa Khammash, Cell lineage branching as a strategy for proliferative control, 2015, 13, 1741-7007, 10.1186/s12915-015-0122-8
    6. Jinzhi Lei, Simon A. Levin, Qing Nie, Mathematical model of adult stem cell regeneration with cross-talk between genetic and epigenetic regulation, 2014, 111, 0027-8424, E880, 10.1073/pnas.1324267111
    7. Marek Kimmel, 2014, Chapter 7, 978-1-4939-2094-5, 119, 10.1007/978-1-4939-2095-2_7
    8. Huijing Du, Yangyang Wang, Daniel Haensel, Briana Lee, Xing Dai, Qing Nie, Philip K. Maini, Multiscale modeling of layer formation in epidermis, 2018, 14, 1553-7358, e1006006, 10.1371/journal.pcbi.1006006
    9. H. Cho, K. Ayers, L. de Pills, Y. Kuo, J. Park, A. Radunskaya, R. Rockne, Modelling Acute Myeloid Leukaemia in a Continuum of Differentiation States, 2018, 5, 23737867, 10.30707/LiB5.2Cho
    10. Qing Nie, Maksim V. Plikus, Equal opportunities in stemness, 2019, 21, 1465-7392, 921, 10.1038/s41556-019-0366-6
    11. David J. Jörg, Yu Kitadate, Shosei Yoshida, Benjamin D. Simons, Stem Cell Populations as Self-Renewing Many-Particle Systems, 2021, 12, 1947-5454, 135, 10.1146/annurev-conmatphys-041720-125707
    12. Jienian Yang, David E. Axelrod, Natalia L. Komarova, Determining the control networks regulating stem cell lineages in colonic crypts, 2017, 429, 00225193, 190, 10.1016/j.jtbi.2017.06.033
    13. Yanli Wang, Wing-Cheong Lo, Ching-Shan Chou, Modelling stem cell ageing: a multi-compartment continuum approach, 2020, 7, 2054-5703, 191848, 10.1098/rsos.191848
    14. Sarah M. Roy, Dominik Wodarz, Tissue architecture, feedback regulation, and resilience to viral infection, 2014, 340, 00225193, 131, 10.1016/j.jtbi.2013.09.011
    15. C. Calmelet, A. Prokop, J. Mensah, L. J. McCawley, P. S. Crooke, Modeling the Cancer Stem Cell Hypothesis, 2010, 5, 0973-5348, 40, 10.1051/mmnp/20105304
    16. Jeremy Ovadia, Qing Nie, Stem Cell Niche Structure as an Inherent Cause of Undulating Epithelial Morphologies, 2013, 104, 00063495, 237, 10.1016/j.bpj.2012.11.3807
    17. G. Jamróz, Measure-transmission metric and stability of structured population models, 2015, 25, 14681218, 9, 10.1016/j.nonrwa.2015.02.008
    18. Wei-Ting Yeh, Hsuan-Yi Chen, A minimal spatial cell lineage model of epithelium: tissue stratification and multi-stability, 2018, 20, 1367-2630, 053051, 10.1088/1367-2630/aac2ad
    19. Erica Manesso, José Teles, David Bryder, Carsten Peterson, Dynamical modelling of haematopoiesis: an integrated view over the system in homeostasis and under perturbation, 2013, 10, 1742-5689, 20120817, 10.1098/rsif.2012.0817
    20. Vijay Velagala, Weitao Chen, Mark Alber, Jeremiah J. Zartman, 2020, 9780128179314, 173, 10.1016/B978-0-12-817931-4.00010-8
    21. Philipp Getto, Anna Marciniak-Czochra, Yukihiko Nakata, Maria dM. Vivanco, Global dynamics of two-compartment models for cell production systems with regulatory mechanisms, 2013, 245, 00255564, 258, 10.1016/j.mbs.2013.07.006
    22. Ignacio A. Rodriguez-Brenes, Dominik Wodarz, 2018, 39, 9780444640727, 3, 10.1016/bs.host.2018.05.004
    23. Arthur D. Lander, Pattern, Growth, and Control, 2011, 144, 00928674, 955, 10.1016/j.cell.2011.03.009
    24. William R. Holmes, Qing Nie, Interactions and Tradeoffs Between Cell Recruitment, Proliferation, and Differentiation Affect CNS Regeneration, 2014, 106, 00063495, 1528, 10.1016/j.bpj.2014.02.010
    25. Natalia L. Komarova, Stephen R. Proulx, Principles of Regulation of Self-Renewing Cell Lineages, 2013, 8, 1932-6203, e72847, 10.1371/journal.pone.0072847
    26. Andrzej Świerniak, Marek Kimmel, Jaroslaw Smieja, Krzysztof Puszynski, Krzysztof Psiuk-Maksymowicz, 2016, Chapter 4, 978-3-319-28093-6, 85, 10.1007/978-3-319-28095-0_4
    27. Hugh R. MacMillan, Michael J. McConnell, Seeing beyond the average cell: branching process models of cell proliferation, differentiation, and death during mouse brain development, 2011, 130, 1431-7613, 31, 10.1007/s12064-010-0107-7
    28. Huijing Du, Qing Nie, William R. Holmes, Carina M Dunlop, The Interplay between Wnt Mediated Expansion and Negative Regulation of Growth Promotes Robust Intestinal Crypt Structure and Homeostasis, 2015, 11, 1553-7358, e1004285, 10.1371/journal.pcbi.1004285
    29. Marissa Renardy, Alexandra Jilkine, Leili Shahriyari, Ching-Shan Chou, Control of cell fraction and population recovery during tissue regeneration in stem cell lineages, 2018, 445, 00225193, 33, 10.1016/j.jtbi.2018.02.017
    30. Piotr Gwiazda, Grzegorz Jamróz, Anna Marciniak-Czochra, Models of Discrete and Continuous Cell Differentiation in the Framework of Transport Equation, 2012, 44, 0036-1410, 1103, 10.1137/11083294X
    31. Arthur D Lander, Judith Kimble, Hans Clevers, Elaine Fuchs, Didier Montarras, Margaret Buckingham, Anne L Calof, Andreas Trumpp, Thordur Oskarsson, What does the concept of the stem cell niche really mean today?, 2012, 10, 1741-7007, 10.1186/1741-7007-10-19
    32. Chiara Fornari, Marco Beccuti, Stefania Lanzardo, Laura Conti, Gianfranco Balbo, Federica Cavallo, Raffaele A. Calogero, Francesca Cordero, Anita B. Hjelmeland, A Mathematical-Biological Joint Effort to Investigate the Tumor-Initiating Ability of Cancer Stem Cells, 2014, 9, 1932-6203, e106193, 10.1371/journal.pone.0106193
    33. Sëma Kachalo, Hammad Naveed, Youfang Cao, Jieling Zhao, Jie Liang, Roeland M.H. Merks, Mechanical Model of Geometric Cell and Topological Algorithm for Cell Dynamics from Single-Cell to Formation of Monolayered Tissues with Pattern, 2015, 10, 1932-6203, e0126484, 10.1371/journal.pone.0126484
    34. Mao-Xiang Wang, Yu-Qiang Ma, Pik-Yin Lai, Regulatory effects on the population dynamics and wave propagation in a cell lineage model, 2016, 393, 00225193, 105, 10.1016/j.jtbi.2015.12.035
    35. Hammad Naveed, Claire Liang, , 2013, Modeling spatial population dynamics of stem cell lineage in wound healing and cancerogenesis, 978-1-4577-0216-7, 5550, 10.1109/EMBC.2013.6610807
    36. Cory L. Howk, Howard A. Levine, Michael W. Smiley, Surya K. Mallapragada, Marit Nilsen-Hamilton, Jisun Oh, Donald S. Sakaguchi, A mathematical model for selective differentiation of neural progenitor cells on micropatterned polymer substrates, 2012, 238, 00255564, 65, 10.1016/j.mbs.2012.04.001
    37. Jianfeng Jiao, Min Luo, Ruiqi Wang, Feedback regulation in a stem cell model with acute myeloid leukaemia, 2018, 12, 1752-0509, 10.1186/s12918-018-0561-2
    38. Frederic Michon, Andrew H. Jheon, Kerstin Seidel, Ophir D. Klein, 2013, 9781118498026, 315, 10.1002/9781118498026.ch17
    39. Ang Li, Yung-Chih Lai, Seth Figueroa, Tian Yang, Randall B. Widelitz, Krzysztof Kobielak, Qing Nie, Cheng Ming Chuong, Deciphering principles of morphogenesis from temporal and spatial patterns on the integument, 2015, 244, 10588388, 905, 10.1002/dvdy.24281
    40. Oliver J. Maclaren, Helen M. Byrne, Alexander G. Fletcher, Philip K. Maini, Models, measurement and inference in epithelial tissue dynamics, 2015, 12, 1551-0018, 1321, 10.3934/mbe.2015.12.1321
    41. T. Stiehl, A. Marciniak-Czochra, Mathematical Modeling of Leukemogenesis and Cancer Stem Cell Dynamics, 2012, 7, 0973-5348, 166, 10.1051/mmnp/20127199
    42. Thomas Walenda, Thomas Stiehl, Hanna Braun, Julia Fröbel, Anthony D. Ho, Thomas Schroeder, Tamme W. Goecke, Björn Rath, Ulrich Germing, Anna Marciniak-Czochra, Wolfgang Wagner, Qing Nie, Feedback Signals in Myelodysplastic Syndromes: Increased Self-Renewal of the Malignant Clone Suppresses Normal Hematopoiesis, 2014, 10, 1553-7358, e1003599, 10.1371/journal.pcbi.1003599
    43. Michelle Lampl, 2019, Chapter 2, 978-3-030-24957-1, 23, 10.1007/978-3-030-24958-8_2
    44. Philipp Getto, Anna Marciniak-Czochra, 2015, Chapter 15, 978-1-4939-2518-6, 247, 10.1007/978-1-4939-2519-3_15
    45. Julie Wells, Briana Lee, Anna Qianyao Cai, Adrine Karapetyan, Wan-Ju Lee, Elizabeth Rugg, Satrajit Sinha, Qing Nie, Xing Dai, Ovol2 Suppresses Cell Cycling and Terminal Differentiation of Keratinocytes by Directly Repressing c-Myc and Notch1, 2009, 284, 00219258, 29125, 10.1074/jbc.M109.008847
    46. H. Youssefpour, X. Li, A.D. Lander, J.S. Lowengrub, Multispecies model of cell lineages and feedback control in solid tumors, 2012, 304, 00225193, 39, 10.1016/j.jtbi.2012.02.030
    47. Zheng Sun, Natalia L. Komarova, Stochastic modeling of stem-cell dynamics with control, 2012, 240, 00255564, 231, 10.1016/j.mbs.2012.08.004
    48. Svetoslav Nikolov, Mukhtar Ullah, Momchil Nenov, Julio Vera Gonzalez, Peter Raasch, Olaf Wolkenhauer, 2013, chapter 3, 9781466625068, 53, 10.4018/978-1-4666-2506-8.ch003
    49. Sameeran Kunche, Huaming Yan, Anne L. Calof, John S. Lowengrub, Arthur D. Lander, Anand R. Asthagiri, Feedback, Lineages and Self-Organizing Morphogenesis, 2016, 12, 1553-7358, e1004814, 10.1371/journal.pcbi.1004814
    50. Jienian Yang, Maksim V. Plikus, Natalia L. Komarova, Arne Traulsen, The Role of Symmetric Stem Cell Divisions in Tissue Homeostasis, 2015, 11, 1553-7358, e1004629, 10.1371/journal.pcbi.1004629
    51. Catherine Ha Ta, Qing Nie, Tian Hong, Controlling stochasticity in epithelial-mesenchymal transition through multiple intermediate cellular states, 2016, 21, 1531-3492, 2275, 10.3934/dcdsb.2016047
    52. Zheng Sun, Maksim V. Plikus, Natalia L. Komarova, Jorge M. Pacheco, Near Equilibrium Calculus of Stem Cells in Application to the Airway Epithelium Lineage, 2016, 12, 1553-7358, e1004990, 10.1371/journal.pcbi.1004990
    53. Alexandra Jilkine, Mathematical Models of Stem Cell Differentiation and Dedifferentiation, 2019, 5, 2198-7866, 66, 10.1007/s40778-019-00156-z
    54. Xiufang Chen, Yue Wang, Tianquan Feng, Ming Yi, Xingan Zhang, Da Zhou, The overshoot and phenotypic equilibrium in characterizing cancer dynamics of reversible phenotypic plasticity, 2016, 390, 00225193, 40, 10.1016/j.jtbi.2015.11.008
    55. Ignacio A. Rodriguez-Brenes, Dominik Wodarz, Natalia L. Komarova, Characterizing inhibited tumor growth in stem-cell-driven non-spatial cancers, 2015, 270, 00255564, 135, 10.1016/j.mbs.2015.08.009
    56. A. Q. Cai, Y. Peng, J. Wells, X. Dai, Q. Nie, Multi-scale Modelling for Threshold Dependent Differentiation, 2009, 4, 0973-5348, 103, 10.1051/mmnp/20094403
    57. Cory L. Howk, Dynamics of a system for migration from proliferative to dormant status, 2017, 36, 0101-8205, 23, 10.1007/s40314-014-0210-3
    58. Meghan E. Hall, Nima Khadem Mohtaram, Stephanie M. Willerth, Roderick Edwards, Modeling the behavior of human induced pluripotent stem cells seeded on melt electrospun scaffolds, 2017, 11, 1754-1611, 10.1186/s13036-017-0080-5
    59. Dominik Wodarz, Effect of cellular de-differentiation on the dynamics and evolution of tissue and tumor cells in mathematical models with feedback regulation, 2018, 448, 00225193, 86, 10.1016/j.jtbi.2018.03.036
    60. A.A. Jermusyk, G.T. Reeves, 2016, 9780123947963, 63, 10.1016/B978-0-12-394447-4.40010-6
    61. A. Di Garbo, M. D. Johnston, S. J. Chapman, P. K. Maini, Variable renewal rate and growth properties of cell populations in colon crypts, 2010, 81, 1539-3755, 10.1103/PhysRevE.81.061909
    62. C. Liang, H. Naveed, , 2012, Modeling spatial population dynamics of stem cell lineage in tissue growth, 978-1-4577-1787-1, 5502, 10.1109/EMBC.2012.6347240
    63. Thomas Stiehl, Natalia Baran, Anthony D. Ho, Anna Marciniak-Czochra, Clonal selection and therapy resistance in acute leukaemias: mathematical modelling explains different proliferation patterns at diagnosis and relapse, 2014, 11, 1742-5689, 20140079, 10.1098/rsif.2014.0079
    64. Matthew D. Johnston, Philip K. Maini, S. Jonathan Chapman, Carina M. Edwards, Walter F. Bodmer, On the proportion of cancer stem cells in a tumour, 2010, 266, 00225193, 708, 10.1016/j.jtbi.2010.07.031
    65. Ching-Shan Chou, Wing-Cheong Lo, Kimberly K. Gokoffski, Yong-Tao Zhang, Frederic Y.M. Wan, Arthur D. Lander, Anne L. Calof, Qing Nie, Spatial Dynamics of Multistage Cell Lineages in Tissue Stratification, 2010, 99, 00063495, 3145, 10.1016/j.bpj.2010.09.034
    66. Ignacio A. Rodriguez-Brenes, Antonina V. Kurtova, Christopher Lin, Yu-Cheng Lee, Jing Xiao, Martha Mims, Keith Syson Chan, Dominik Wodarz, Cellular Hierarchy as a Determinant of Tumor Sensitivity to Chemotherapy, 2017, 77, 0008-5472, 2231, 10.1158/0008-5472.CAN-16-2434
    67. David J. Stone, Leo Anthony Celi, Marie Csete, Engineering control into medicine, 2015, 30, 08839441, 652.e1, 10.1016/j.jcrc.2015.01.019
    68. Xu Zhou, Ruth A. Franklin, Miri Adler, Jeremy B. Jacox, Will Bailis, Justin A. Shyer, Richard A. Flavell, Avi Mayo, Uri Alon, Ruslan Medzhitov, Circuit Design Features of a Stable Two-Cell System, 2018, 172, 00928674, 744, 10.1016/j.cell.2018.01.015
    69. Jienian Yang, Zheng Sun, Natalia L. Komarova, Analysis of stochastic stem cell models with control, 2015, 266, 00255564, 93, 10.1016/j.mbs.2015.06.001
    70. Nathaniel Vincent Mon Père, Tom Lenaerts, Jorge Manuel dos Santos Pacheco, David Dingli, Multistage feedback-driven compartmental dynamics of hematopoiesis, 2021, 24, 25890042, 102326, 10.1016/j.isci.2021.102326
    71. Kara L. Cerveny, Florencia Cavodeassi, Katherine J. Turner, Tanya A. de Jong-Curtain, Joan K. Heath, Stephen W. Wilson, The zebrafish flotte lotte mutant reveals that the local retinal environment promotes the differentiation of proliferating precursors emerging from their stem cell niche, 2010, 137, 1477-9129, 2107, 10.1242/dev.047753
    72. Iqra Batool, Naim Bajcinca, Ivan Kryven, Evolution of cancer stem cell lineage involving feedback regulation, 2021, 16, 1932-6203, e0251481, 10.1371/journal.pone.0251481
    73. A.A. Jermusyk, G.T. Reeves, 2016, 9780128216248, 232, 10.1016/B978-0-12-821618-7.40010-6
    74. Mao-Xiang Wang, Arthur Lander, Pik-Yin Lai, Regulatory feedback effects on tissue growth dynamics in a two-stage cell lineage model, 2021, 104, 2470-0045, 10.1103/PhysRevE.104.034405
    75. Matthias M. Fischer, Hanspeter Herzel, Nils Blüthgen, Mathematical modelling identifies conditions for maintaining and escaping feedback control in the intestinal epithelium, 2022, 12, 2045-2322, 10.1038/s41598-022-09202-z
    76. Rodrigo García-Tejera, Linus Schumacher, Ramon Grima, Regulation of stem cell dynamics through volume exclusion, 2022, 478, 1364-5021, 10.1098/rspa.2022.0376
    77. Xinfeng Liu, Sara Johnson, Shou Liu, Deepak Kanojia, Wei Yue, Udai P. Singh, Qian Wang, Qi Wang, Qing Nie, Hexin Chen, Nonlinear Growth Kinetics of Breast Cancer Stem Cells: Implications for Cancer Stem Cell Targeted Therapy, 2013, 3, 2045-2322, 10.1038/srep02473
    78. Steven Dabelow, Allison LeHanka, Alexandra Jilkine, Distinguishing between multiple mathematical models of neural stem cell quiescence and activation during age-related neural stem cell decline in neurogenesis, 2022, 346, 00255564, 108807, 10.1016/j.mbs.2022.108807
    79. Peter Uhl, John Lowengrub, Natalia Komarova, Dominik Wodarz, Feng Fu, Spatial dynamics of feedback and feedforward regulation in cell lineages, 2022, 18, 1553-7358, e1010039, 10.1371/journal.pcbi.1010039
    80. Weigang Sun, Lei Yang, Min Luo, Effects of immune response and time delays in models of acute myeloid leukemia, 2022, 110, 0924-090X, 1789, 10.1007/s11071-022-07697-9
    81. Yuman Wang, Jintong Zhao, Hye Jin Park, Da Zhou, Effect of dedifferentiation on noise propagation in cellular hierarchy, 2022, 105, 2470-0045, 10.1103/PhysRevE.105.054409
    82. LORA D. BAILEY, NATALIA L. KOMAROVA, CELLULAR FEEDBACK NETWORKS AND THEIR RESILIENCE AGAINST MUTATIONS, 2021, 29, 0218-3390, 325, 10.1142/S0218339021400039
    83. Xu Zhou, Ruth A. Franklin, Miri Adler, Trevor S. Carter, Emily Condiff, Taylor S. Adams, Scott D. Pope, Naomi H. Philip, Matthew L. Meizlish, Naftali Kaminski, Ruslan Medzhitov, Microenvironmental sensing by fibroblasts controls macrophage population size, 2022, 119, 0027-8424, 10.1073/pnas.2205360119
    84. Cecilia Duran, Manuel Barcenas, Qixuan Wang, Modeling of ionizing radiation induced hair follicle regenerative dynamics, 2022, 555, 00225193, 111283, 10.1016/j.jtbi.2022.111283
    85. Diana-Patricia Danciu, Jooa Hooli, Ana Martin-Villalba, Anna Marciniak-Czochra, Mathematics of neural stem cells: Linking data and processes, 2023, 26672901, 203849, 10.1016/j.cdev.2023.203849
    86. Alireza Ramezani, Samuel Britton, Roya Zandi, Mark Alber, Ali Nematbakhsh, Weitao Chen, A multiscale chemical-mechanical model predicts impact of morphogen spreading on tissue growth, 2023, 9, 2056-7189, 10.1038/s41540-023-00278-5
    87. Konstantinos Mamis, Ruibo Zhang, Ivana Bozic, Stochastic model for cell population dynamics quantifies homeostasis in colonic crypts and its disruption in early tumorigenesis, 2023, 290, 0962-8452, 10.1098/rspb.2023.1020
    88. Christian Düll, Piotr Gwiazda, Anna Marciniak-Czochra, Jakub Skrzeczkowski, Structured population models on Polish spaces: A unified approach including graphs, Riemannian manifolds and measure spaces to describe dynamics of heterogeneous populations, 2024, 34, 0218-2025, 109, 10.1142/S0218202524400037
    89. Marco Wachtel, Didier Surdez, Thomas G. P. Grünewald, Beat W. Schäfer, Functional Classification of Fusion Proteins in Sarcoma, 2024, 16, 2072-6694, 1355, 10.3390/cancers16071355
    90. Jose E. Zamora Alvarado, Kara E. McCloskey, Ajay Gopinathan, Migration and proliferation drive the emergence of patterns in co-cultures of differentiating vascular progenitor cells, 2024, 21, 1551-0018, 6731, 10.3934/mbe.2024295
    91. Natalia L. Komarova, Chiara Rignot, Angela G. Fleischman, Dominik Wodarz, Dynamically adjusted cell fate decisions and resilience to mutant invasion during steady-state hematopoiesis revealed by an experimentally parameterized mathematical model, 2024, 121, 0027-8424, 10.1073/pnas.2321525121
    92. Rodrigo García-Tejera, Jing-Yi Tian, Marc Amoyel, Ramon Grima, Linus J. Schumacher, Licensing and niche competition in spermatogenesis: mathematical models suggest complementary regulation of tissue maintenance, 2025, 152, 0950-1991, 10.1242/dev.202796
  • Reader Comments
  • © 2009 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4533) PDF downloads(604) Cited by(92)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog