Modeling the effect of information campaigns on the HIV epidemic in Uganda

  • Received: 01 December 2007 Accepted: 29 June 2018 Published: 01 October 2008
  • MSC : 34K34, 92D30

  • The increasing prevalence of HIV/AIDS in Africa over the past twenty-five years continues to erode the continent's health care and overall welfare. There have been various responses to the pandemic, led by Uganda, which has had the greatest success in combating the disease. Part of Uganda's success has been attributed to a formalized information, education, and communication (IEC) strategy, lowering estimated HIV/AIDS infection rates from 18.5% in 1995 to 4.1% in 2003. We formulate a model to investigate the effects of information and education campaigns on the HIV epidemic in Uganda. These campaigns affect people's behavior and can divide the susceptibles class into subclasses with different infectivity rates. Our model is a system of ordinary differential equations and we use data about the epidemics and the number of organizations involved in the campaigns to estimate the model parameters. We compare our model with three types of susceptibles to a standard SIR model.

    Citation: Hem Joshi, Suzanne Lenhart, Kendra Albright, Kevin Gipson. Modeling the effect of information campaigns on the HIV epidemic in Uganda[J]. Mathematical Biosciences and Engineering, 2008, 5(4): 757-770. doi: 10.3934/mbe.2008.5.757

    Related Papers:

    [1] Divine Wanduku . A nonlinear multi-population behavioral model to assess the roles of education campaigns, random supply of aids, and delayed ART treatment in HIV/AIDS epidemics. Mathematical Biosciences and Engineering, 2020, 17(6): 6791-6837. doi: 10.3934/mbe.2020354
    [2] Churni Gupta, Necibe Tuncer, Maia Martcheva . Immuno-epidemiological co-affection model of HIV infection and opioid addiction. Mathematical Biosciences and Engineering, 2022, 19(4): 3636-3672. doi: 10.3934/mbe.2022168
    [3] Brandy Rapatski, Petra Klepac, Stephen Dueck, Maoxing Liu, Leda Ivic Weiss . Mathematical epidemiology of HIV/AIDS in cuba during the period 1986-2000. Mathematical Biosciences and Engineering, 2006, 3(3): 545-556. doi: 10.3934/mbe.2006.3.545
    [4] Nawei Chen, Shenglong Chen, Xiaoyu Li, Zhiming Li . Modelling and analysis of the HIV/AIDS epidemic with fast and slow asymptomatic infections in China from 2008 to 2021. Mathematical Biosciences and Engineering, 2023, 20(12): 20770-20794. doi: 10.3934/mbe.2023919
    [5] Tefa Kaisara, Farai Nyabadza . Modelling Botswana's HIV/AIDS response and treatment policy changes: Insights from a cascade of mathematical models. Mathematical Biosciences and Engineering, 2023, 20(1): 1122-1147. doi: 10.3934/mbe.2023052
    [6] Miguel Atencia, Esther García-Garaluz, Gonzalo Joya . The ratio of hidden HIV infection in Cuba. Mathematical Biosciences and Engineering, 2013, 10(4): 959-977. doi: 10.3934/mbe.2013.10.959
    [7] Sonza Singh, Anne Marie France, Yao-Hsuan Chen, Paul G. Farnham, Alexandra M. Oster, Chaitra Gopalappa . Progression and transmission of HIV (PATH 4.0)-A new agent-based evolving network simulation for modeling HIV transmission clusters. Mathematical Biosciences and Engineering, 2021, 18(3): 2150-2181. doi: 10.3934/mbe.2021109
    [8] Jeff Musgrave, James Watmough . Examination of a simple model of condom usage and individual withdrawal for the HIV epidemic. Mathematical Biosciences and Engineering, 2009, 6(2): 363-376. doi: 10.3934/mbe.2009.6.363
    [9] Brandy Rapatski, James Yorke . Modeling HIV outbreaks: The male to female prevalence ratio in the core population. Mathematical Biosciences and Engineering, 2009, 6(1): 135-143. doi: 10.3934/mbe.2009.6.135
    [10] Bruno Buonomo . A simple analysis of vaccination strategies for rubella. Mathematical Biosciences and Engineering, 2011, 8(3): 677-687. doi: 10.3934/mbe.2011.8.677
  • The increasing prevalence of HIV/AIDS in Africa over the past twenty-five years continues to erode the continent's health care and overall welfare. There have been various responses to the pandemic, led by Uganda, which has had the greatest success in combating the disease. Part of Uganda's success has been attributed to a formalized information, education, and communication (IEC) strategy, lowering estimated HIV/AIDS infection rates from 18.5% in 1995 to 4.1% in 2003. We formulate a model to investigate the effects of information and education campaigns on the HIV epidemic in Uganda. These campaigns affect people's behavior and can divide the susceptibles class into subclasses with different infectivity rates. Our model is a system of ordinary differential equations and we use data about the epidemics and the number of organizations involved in the campaigns to estimate the model parameters. We compare our model with three types of susceptibles to a standard SIR model.


  • This article has been cited by:

    1. Anuj Kumar, Prashant K. Srivastava, Yasuhiro Takeuchi, Modeling the role of information and limited optimal treatment on disease prevalence, 2017, 414, 00225193, 103, 10.1016/j.jtbi.2016.11.016
    2. Benjamin Levy, Christina Edholm, Orou Gaoue, Roselyn Kaondera-Shava, Moatlhodi Kgosimore, Suzanne Lenhart, Benjamin Lephodisa, Edward Lungu, Theresia Marijani, Farai Nyabadza, Modeling the role of public health education in Ebola virus disease outbreaks in Sudan, 2017, 2, 24680427, 323, 10.1016/j.idm.2017.06.004
    3. F. Nyabadza, Z. Mukandavire, S.D. Hove-Musekwa, Modelling the HIV/AIDS epidemic trends in South Africa: Insights from a simple mathematical model, 2011, 12, 14681218, 2091, 10.1016/j.nonrwa.2010.12.024
    4. Anuj Kumar, Prashant K Srivastava, Anuradha Yadav, Delayed information induces oscillations in a dynamical model for infectious disease, 2019, 12, 1793-5245, 1950020, 10.1142/S1793524519500207
    5. Lixia Zuo, Maoxing Liu, Jinqiang Wang, The Impact of Awareness Programs with Recruitment and Delay on the Spread of an Epidemic, 2015, 2015, 1024-123X, 1, 10.1155/2015/235935
    6. C. S. Bornaa, Baba Seidu, M. I. Daabo, Mathematical Analysis of Rabies Infection, 2020, 2020, 1110-757X, 1, 10.1155/2020/1804270
    7. A.K. Misra, Anupama Sharma, J.B. Shukla, Stability analysis and optimal control of an epidemic model with awareness programs by media, 2015, 138, 03032647, 53, 10.1016/j.biosystems.2015.11.002
    8. Suzanne Lenhart, Hem Raj Joshi, Folashade Agusto, Sanjukta Hota, 2015, Optimal control and stability analysis of an epidemic model with education campaign and treatment, 1-60133-018-9, 621, 10.3934/proc.2015.0621
    9. A. Kumar, P. K. Srivastava, 2018, Chapter 21, 978-3-319-91091-8, 313, 10.1007/978-3-319-91092-5_21
    10. A. K. Misra, Anupama Sharma, Jia Li, A mathematical model for control of vector borne diseases through media campaigns, 2013, 18, 1553-524X, 1909, 10.3934/dcdsb.2013.18.1909
    11. Shu Liao, Weiming Yang, Cholera model incorporating media coverage with multiple delays, 2019, 42, 01704214, 419, 10.1002/mma.5175
    12. David Greenhalgh, Sourav Rana, Sudip Samanta, Tridip Sardar, Sabyasachi Bhattacharya, Joydev Chattopadhyay, Awareness programs control infectious disease – Multiple delay induced mathematical model, 2015, 251, 00963003, 539, 10.1016/j.amc.2014.11.091
    13. Cristiana J. Silva, Delfim F.M. Torres, A SICA compartmental model in epidemiology with application to HIV/AIDS in Cape Verde, 2017, 30, 1476945X, 70, 10.1016/j.ecocom.2016.12.001
    14. F. Nyabadza, Z. Mukandavire, Modelling HIV/AIDS in the presence of an HIV testing and screening campaign, 2011, 280, 00225193, 167, 10.1016/j.jtbi.2011.04.021
    15. Maoxing Liu, Lixia Zuo, The impact of media coverage with a piecewise transmission rate in the spread of diseases, 2017, 10, 1793-5245, 1750003, 10.1142/S1793524517500036
    16. A. K. Misra, Rajanish Kumar Rai, Yasuhiro Takeuchi, Modeling the effect of time delay in budget allocation to control an epidemic through awareness, 2018, 11, 1793-5245, 1850027, 10.1142/S1793524518500274
    17. Marilyn Ronoh, Faraimunashe Chirove, Josephine Wairimu, Wandera Ogana, Gabriela Paz-Bailey, Evidence-based modeling of combination control on Kenyan youth HIV/AIDS dynamics, 2020, 15, 1932-6203, e0242491, 10.1371/journal.pone.0242491
    18. Steven Ndugwa Kabwama, Daniel Kadobera, Sheila Ndyanabangi, Perceptions about the harmfulness of tobacco among adults in Uganda: Findings from the 2013 Global Adult Tobacco Survey, 2018, 16, 1617-9625, 10.18332/tid/99574
    19. Divine Wanduku, On the almost sure convergence of a stochastic process in a class of nonlinear multi-population behavioral models for HIV/AIDS with delayed ART treatment, 2020, 0736-2994, 1, 10.1080/07362994.2020.1848593
    20. Alessandro Comunian, Romina Gaburro, Mauro Giudici, Inversion of a SIR-based model: A critical analysis about the application to COVID-19 epidemic, 2020, 413, 01672789, 132674, 10.1016/j.physd.2020.132674
    21. A. K. Misra, Rajanish Kumar Rai, A Mathematical Model for the Control of Infectious Diseases: Effects of TV and Radio Advertisements, 2018, 28, 0218-1274, 1850037, 10.1142/S0218127418500372
    22. FARAI NYABADZA, CHRISTINAH CHIYAKA, ZINDOGA MUKANDAVIRE, SENELANI D. HOVE-MUSEKWA, ANALYSIS OF AN HIV/AIDS MODEL WITH PUBLIC-HEALTH INFORMATION CAMPAIGNS AND INDIVIDUAL WITHDRAWAL, 2010, 18, 0218-3390, 357, 10.1142/S0218339010003329
    23. Driss Kiouach, Yassine Sabbar, 2019, 2074, 0094-243X, 020026, 10.1063/1.5090643
    24. Kangbo Bao, Qimin Zhang, Stationary distribution and extinction of a stochastic SIRS epidemic model with information intervention, 2017, 2017, 1687-1847, 10.1186/s13662-017-1406-9
    25. Lixia Zuo, Maoxing Liu, Effect of Awareness Programs on the Epidemic Outbreaks with Time Delay, 2014, 2014, 1085-3375, 1, 10.1155/2014/940841
    26. C. P. Bhunu, S. Mushayabasa, H. Kojouharov, J. M. Tchuenche, Mathematical Analysis of an HIV/AIDS Model: Impact of Educational Programs and Abstinence in Sub-Saharan Africa, 2011, 10, 1570-1166, 31, 10.1007/s10852-010-9134-0
    27. E. Numfor, S. Bhattacharya, S. Lenhart, M. Martcheva, S. Anita, N. Hritonenko, G. Marinoschi, A. Swierniak, Optimal Control in Coupled Within-host and Between-host Models, 2014, 9, 0973-5348, 171, 10.1051/mmnp/20149411
    28. Tunde T. Yusuf, Francis Benyah, Optimal strategy for controlling the spread of HIV/AIDS disease: a case study of South Africa, 2012, 6, 1751-3758, 475, 10.1080/17513758.2011.628700
    29. Renee Margevicius, Hem Joshi, The influence of education in reducing the HIV epidemic, 2013, 6, 1944-4184, 127, 10.2140/involve.2013.6.127
    30. Semu Mitiku Kassa, Yetwale Hailu Workineh, Effect of negligence and length of time delay in spontaneous behavioural changes for the response to epidemics, 2018, 41, 01704214, 8613, 10.1002/mma.4926
    31. Semu Mitiku Kassa, Aziz Ouhinou, The impact of self-protective measures in the optimal interventions for controlling infectious diseases of human population, 2015, 70, 0303-6812, 213, 10.1007/s00285-014-0761-3
    32. Sangeeta Saha, G.P. Samanta, Modelling and optimal control of HIV/AIDS prevention through PrEP and limited treatment, 2019, 516, 03784371, 280, 10.1016/j.physa.2018.10.033
    33. K. O. Okosun, M. A. Khan, E. Bonyah, S. T. Ogunlade, On the dynamics of HIV-AIDS and cryptosporidiosis, 2017, 132, 2190-5444, 10.1140/epjp/i2017-11625-3
    34. Divine Wanduku, Finite- and multi-dimensional state representations and some fundamental asymptotic properties of a family of nonlinear multi-population models for HIV/AIDS with ART treatment and distributed delays, 2021, 0, 1937-1179, 0, 10.3934/dcdss.2021005
    35. Sangeeta Saha, Protyusha Dutta, Guruprasad Samanta, Dynamical behavior of SIRS model incorporating government action and public response in presence of deterministic and fluctuating environments, 2022, 164, 09600779, 112643, 10.1016/j.chaos.2022.112643
    36. Jayanta Mondal, Subhas Khajanchi, Piu Samui, Impact of media awareness in mitigating the spread of an infectious disease with application to optimal control, 2022, 137, 2190-5444, 10.1140/epjp/s13360-022-03156-x
    37. Rakesh Medda, Samares Pal, Joydeb Bhattacharyya, 2022, Chapter 21, 978-3-031-12514-0, 383, 10.1007/978-3-031-12515-7_21
    38. Peijiang Liu, Anwarud Din, , Impact of information intervention on stochastic dengue epidemic model, 2021, 60, 11100168, 5725, 10.1016/j.aej.2021.03.068
    39. Tingting Ding, Tongqian Zhang, Asymptotic behavior of the solutions for a stochastic SIRS model with information intervention, 2022, 19, 1551-0018, 6940, 10.3934/mbe.2022327
    40. Dawit Denu, Sedar Ngoma, Rachidi B. Salako, Dynamics of solutions of a diffusive time-delayed HIV/AIDS epidemic model: Traveling wave solutions and spreading speeds, 2023, 344, 00220396, 846, 10.1016/j.jde.2022.11.009
    41. Wolfgang Messner, Shah Md Atiqul Haq, The association of cultural and contextual factors with social contact avoidance during the COVID-19 pandemic, 2021, 16, 1932-6203, e0261858, 10.1371/journal.pone.0261858
    42. Rashid Jan, Sania Qureshi, Salah Boulaaras, Viet-Thanh Pham, Evren Hincal, Rafik Guefaifia, Optimization of the fractional-order parameter with the error analysis for human immunodeficiency virus under Caputo operator, 2023, 0, 1937-1632, 0, 10.3934/dcdss.2023010
    43. Anwarud Din, Yongjin Li, Abdullahi Yusuf, Jinping Liu, Ayman A. Aly, Impact of information intervention on stochastic hepatitis B model and its variable-order fractional network, 2022, 231, 1951-6355, 1859, 10.1140/epjs/s11734-022-00453-5
    44. Dawit Denu, Sedar Ngoma, Rachidi B. Salako, Analysis of a time-delayed HIV/AIDS epidemic model with education campaigns, 2021, 40, 2238-3603, 10.1007/s40314-021-01601-8
    45. Jiaxin Shi, Dongwei Huang, 2023, Chapter 6, 978-981-99-3950-3, 40, 10.1007/978-981-99-3951-0_6
    46. Tongrui Zhang, Zhijie Zhang, Zhiyuan Yu, Qimin Huang, Daozhou Gao, Effects of behaviour change on HFMD transmission, 2023, 17, 1751-3758, 10.1080/17513758.2023.2244968
    47. Michael O. Adeniyi, Asimi A. Amalare, Segun I. Oke, Sulyman O. Salawu, Bifurcation analysis and global sensitivity index for malaria disease transmission dynamics: Information and treated bed nets control, 2024, 17, 1793-5245, 10.1142/S1793524523500602
    48. Sumana Ghosh, Jayanta Mondal, Subhas Khajanchi, Effect of media awareness in the spread of infectious diseases, 2025, 1598-5865, 10.1007/s12190-025-02387-2
    49. A. Alla Hamou, E. Azroul, S. L'Kima, The effect of migration on the transmission of HIV/AIDS using a fractional model: Local and global dynamics and numerical simulations, 2024, 47, 0170-4214, 6868, 10.1002/mma.9946
  • Reader Comments
  • © 2008 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4473) PDF downloads(652) Cited by(48)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog