A theoretic control approach in signal-controlled metabolic pathways

  • Received: 01 August 2006 Accepted: 29 June 2018 Published: 01 May 2007
  • MSC : 92C45, 92C40, 93D20, 34D05.

  • Cells use a signal transduction mechanism to regulate certain metabolic pathways. In this paper, the regulatory mechanism is analyzed mathematically. For this analysis, a mathematical model for the pathways is first established using a system of differential equations. Then the linear stability, controllability, and observability of the system are investigated. We show that the linearized system is controllable and observable, and that the real parts of all eigenvalues of the linearized system are nonpositive using Routh's stability criterion. Controllability and observability are structural properties of a dynamical system. Thus our results may explain why the metabolic pathways can be controlled and regulated. Finally observer-based and proportional output feedback controllers are designed to regulate the end product to its desired level. Applications to the regulation of blood glucose levels are discussed.

    Citation: Ramesh Garimella, Uma Garimella, Weijiu Liu. A theoretic control approach in signal-controlled metabolic pathways[J]. Mathematical Biosciences and Engineering, 2007, 4(3): 471-488. doi: 10.3934/mbe.2007.4.471

    Related Papers:

    [1] Sufang Wu, Hua He, Jingjing Huang, Shiyao Jiang, Xiyun Deng, Jun Huang, Yuanbing Chen, Yiqun Jiang . FMR1 is identified as an immune-related novel prognostic biomarker for renal clear cell carcinoma: A bioinformatics analysis of TAZ/YAP. Mathematical Biosciences and Engineering, 2022, 19(9): 9295-9320. doi: 10.3934/mbe.2022432
    [2] Shengjue Xiao, Yufei Zhou, Ailin Liu, Qi Wu, Yue Hu, Jie Liu, Hong Zhu, Ting Yin, Defeng Pan . Uncovering potential novel biomarkers and immune infiltration characteristics in persistent atrial fibrillation using integrated bioinformatics analysis. Mathematical Biosciences and Engineering, 2021, 18(4): 4696-4712. doi: 10.3934/mbe.2021238
    [3] Kewei Ni, Gaozhong Sun . The identification of key biomarkers in patients with lung adenocarcinoma based on bioinformatics. Mathematical Biosciences and Engineering, 2019, 16(6): 7671-7687. doi: 10.3934/mbe.2019384
    [4] Wei Huo, Xiao-Min Zhu, Xin-Yan Pan, Min Du, Zhuo Sun, Zhi-Min Li . MicroRNA-527 inhibits TGF-β/SMAD induced epithelial-mesenchymal transition via downregulating SULF2 expression in non-small-cell lung cancer. Mathematical Biosciences and Engineering, 2019, 16(5): 4607-4621. doi: 10.3934/mbe.2019231
    [5] Dongchen Lu, Wei Han, Kai Lu . Identification of key microRNAs involved in tumorigenesis and prognostic microRNAs in breast cancer. Mathematical Biosciences and Engineering, 2020, 17(4): 2923-2935. doi: 10.3934/mbe.2020164
    [6] Zhongwei Zhao, Xiaoxi Fan, Lili Yang, Jingjing Song, Shiji Fang, Jianfei Tu, Minjiang Chen, Liyun Zheng, Fazong Wu, Dengke Zhang, Xihui Ying, Jiansong Ji . The identification of a common different gene expression signature in patients with colorectal cancer. Mathematical Biosciences and Engineering, 2019, 16(4): 2942-2958. doi: 10.3934/mbe.2019145
    [7] Anshuman Swain, William F Fagan . A mathematical model of the Warburg Effect: Effects of cell size, shape and substrate availability on growth and metabolism in bacteria. Mathematical Biosciences and Engineering, 2019, 16(1): 168-186. doi: 10.3934/mbe.2019009
    [8] Tingzhe Sun, Dan Mu . Multi-scale modeling identifies the role of p53-Gys2 negative feedback loop in cellular homeostasis. Mathematical Biosciences and Engineering, 2020, 17(4): 3260-3273. doi: 10.3934/mbe.2020186
    [9] Yue Liu, Wing-Cheong Lo . Analysis of spontaneous emergence of cell polarity with delayed negative feedback. Mathematical Biosciences and Engineering, 2019, 16(3): 1392-1413. doi: 10.3934/mbe.2019068
    [10] Jaroslaw Smieja, Marzena Dolbniak . Sensitivity of signaling pathway dynamics to plasmid transfection and its consequences. Mathematical Biosciences and Engineering, 2016, 13(6): 1207-1222. doi: 10.3934/mbe.2016039
  • Cells use a signal transduction mechanism to regulate certain metabolic pathways. In this paper, the regulatory mechanism is analyzed mathematically. For this analysis, a mathematical model for the pathways is first established using a system of differential equations. Then the linear stability, controllability, and observability of the system are investigated. We show that the linearized system is controllable and observable, and that the real parts of all eigenvalues of the linearized system are nonpositive using Routh's stability criterion. Controllability and observability are structural properties of a dynamical system. Thus our results may explain why the metabolic pathways can be controlled and regulated. Finally observer-based and proportional output feedback controllers are designed to regulate the end product to its desired level. Applications to the regulation of blood glucose levels are discussed.


  • This article has been cited by:

    1. Ping Bi, Shigui Ruan, Bifurcations in Delay Differential Equations and Applications to Tumor and Immune System Interaction Models, 2013, 12, 1536-0040, 1847, 10.1137/120887898
    2. Weijiu Liu, Fusheng Tang, Jingvoon Chen, Designing dynamical output feedback controllers for store-operated Ca2+ entry, 2010, 228, 00255564, 110, 10.1016/j.mbs.2010.08.013
    3. M. S. Vinogradova, S. B. Tkachev, O. S. Tkacheva, Using an Observer in a Sliding Mode for Modeling Antiangiogenic Therapy, 2019, 2412-5911, 52, 10.24108/mathm.0618.0000165
    4. Joseph J. Crivelli, Juraj Földes, Peter S. Kim, Joanna R. Wares, A mathematical model for cell cycle-specific cancer virotherapy, 2012, 6, 1751-3758, 104, 10.1080/17513758.2011.613486
  • Reader Comments
  • © 2007 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2596) PDF downloads(535) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog