The stability of stationary fronts for a discrete nerve axon model

  • Received: 01 April 2006 Accepted: 29 June 2018 Published: 01 November 2006
  • MSC : 34K20,37K45.

  • We consider the stability of single-front stationary solutions to a spatially discrete reaction-diffusion equation which models front propagation in a nerve axon. The solution's stability depends on the coupling parameter, changing from stable to unstable and from unstable to stable at a countably infinite number of values of this diffusion coefficient.

    Citation: Christopher E. Elmer. The stability of stationary fronts for a discrete nerve axon model[J]. Mathematical Biosciences and Engineering, 2007, 4(1): 113-129. doi: 10.3934/mbe.2007.4.113

    Related Papers:

    [1] Daniel Špale, Petr Stehlík . Stationary patterns in bistable reaction-diffusion cellular automata. Mathematical Biosciences and Engineering, 2022, 19(6): 6072-6087. doi: 10.3934/mbe.2022283
    [2] Alan Dyson . Traveling wave solutions to a neural field model with oscillatory synaptic coupling types. Mathematical Biosciences and Engineering, 2019, 16(2): 727-758. doi: 10.3934/mbe.2019035
    [3] Yuanfei Li, Xuejiao Chen . Spatial decay bound and structural stability for the double-diffusion perturbation equations. Mathematical Biosciences and Engineering, 2023, 20(2): 2998-3022. doi: 10.3934/mbe.2023142
    [4] Ali Moussaoui, Vitaly Volpert . The influence of immune cells on the existence of virus quasi-species. Mathematical Biosciences and Engineering, 2023, 20(9): 15942-15961. doi: 10.3934/mbe.2023710
    [5] Marcin Choiński, Mariusz Bodzioch, Urszula Foryś . A non-standard discretized SIS model of epidemics. Mathematical Biosciences and Engineering, 2022, 19(1): 115-133. doi: 10.3934/mbe.2022006
    [6] Chichia Chiu, Jui-Ling Yu . An optimal adaptive time-stepping scheme for solving reaction-diffusion-chemotaxis systems. Mathematical Biosciences and Engineering, 2007, 4(2): 187-203. doi: 10.3934/mbe.2007.4.187
    [7] Guangrui Li, Ming Mei, Yau Shu Wong . Nonlinear stability of traveling wavefronts in an age-structured reaction-diffusion population model. Mathematical Biosciences and Engineering, 2008, 5(1): 85-100. doi: 10.3934/mbe.2008.5.85
    [8] Swadesh Pal, Malay Banerjee, Vitaly Volpert . Spatio-temporal Bazykin’s model with space-time nonlocality. Mathematical Biosciences and Engineering, 2020, 17(5): 4801-4824. doi: 10.3934/mbe.2020262
    [9] Danfeng Pang, Yanni Xiao . The SIS model with diffusion of virus in the environment. Mathematical Biosciences and Engineering, 2019, 16(4): 2852-2874. doi: 10.3934/mbe.2019141
    [10] Lin Zhang, Yongbin Ge, Xiaojia Yang . High-accuracy positivity-preserving numerical method for Keller-Segel model. Mathematical Biosciences and Engineering, 2023, 20(5): 8601-8631. doi: 10.3934/mbe.2023378
  • We consider the stability of single-front stationary solutions to a spatially discrete reaction-diffusion equation which models front propagation in a nerve axon. The solution's stability depends on the coupling parameter, changing from stable to unstable and from unstable to stable at a countably infinite number of values of this diffusion coefficient.


  • This article has been cited by:

    1. Elizabeth Lydon, Brian E. Moore, Propagation failure of fronts in discrete inhomogeneous media with a sawtooth nonlinearity, 2016, 22, 1023-6198, 1930, 10.1080/10236198.2016.1255209
    2. Brian E. Moore, Joseph M. Segal, Stationary bistable pulses in discrete inhomogeneous media, 2014, 20, 1023-6198, 1, 10.1080/10236198.2013.800868
    3. A. R. Humphries, Brian E. Moore, Erik S. Van Vleck, Front Solutions for Bistable Differential-Difference Equations with Inhomogeneous Diffusion, 2011, 71, 0036-1399, 1374, 10.1137/100807156
  • Reader Comments
  • © 2007 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2410) PDF downloads(467) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog