Optimal control for management of an invasive plant species

  • Received: 01 January 2006 Accepted: 29 June 2018 Published: 01 November 2006
  • MSC : 92D40.

  • Invasive plant populations typically consist of a large (main) focus and several smaller outlier populations. Management of the spread of invasives requires repeated control measures, constrained by limited funding and effort. Posing this as a control problem, we investigate whether it is best to apply control to the main focus, the outlier populations, or some combination of these. We first formulate and solve a discrete-time optimal control problem to determine where control is best applied over a finite time horizon. However, if limited funds are available for control, this optimal solution may not be feasible. In this case, we add an additional constraint to account for the fixed budget and solve the new optimality system. Our results have a variety of practical implications for invasive species management.

    Citation: Andrew J. Whittle, Suzanne Lenhart, Louis J. Gross. Optimal control for management of an invasive plant species[J]. Mathematical Biosciences and Engineering, 2007, 4(1): 101-112. doi: 10.3934/mbe.2007.4.101

    Related Papers:

    [1] Zhiyin Gao, Sen Liu, Weide Li . Biological control for predation invasion based on pair approximation. Mathematical Biosciences and Engineering, 2022, 19(10): 10252-10274. doi: 10.3934/mbe.2022480
    [2] Maryam Basiri, Frithjof Lutscher, Abbas Moameni . Traveling waves in a free boundary problem for the spread of ecosystem engineers. Mathematical Biosciences and Engineering, 2025, 22(1): 152-184. doi: 10.3934/mbe.2025008
    [3] Linda J. S. Allen, Vrushali A. Bokil . Stochastic models for competing species with a shared pathogen. Mathematical Biosciences and Engineering, 2012, 9(3): 461-485. doi: 10.3934/mbe.2012.9.461
    [4] José Luis Díaz Palencia, Abraham Otero . Modelling the interaction of invasive-invaded species based on the general Bramson dynamics and with a density dependant diffusion and advection. Mathematical Biosciences and Engineering, 2023, 20(7): 13200-13221. doi: 10.3934/mbe.2023589
    [5] Li-Jun Du, Wan-Tong Li, Jia-Bing Wang . Invasion entire solutions in a time periodic Lotka-Volterra competition system with diffusion. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1187-1213. doi: 10.3934/mbe.2017061
    [6] Carlos Castillo-Chavez, Bingtuan Li, Haiyan Wang . Some recent developments on linear determinacy. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1419-1436. doi: 10.3934/mbe.2013.10.1419
    [7] Dan Zhu, Qinfang Qian . Optimal switching time control of the hyperbaric oxygen therapy for a chronic wound. Mathematical Biosciences and Engineering, 2019, 16(6): 8290-8308. doi: 10.3934/mbe.2019419
    [8] Holly Gaff, Robyn Nadolny . Identifying requirements for the invasion of a tick species and tick-borne pathogen through TICKSIM. Mathematical Biosciences and Engineering, 2013, 10(3): 625-635. doi: 10.3934/mbe.2013.10.625
    [9] Yongli Yan, Tiansheng Sun, Teng Ren, Li Ding . Enhanced grip force estimation in robotic surgery: A sparrow search algorithm-optimized backpropagation neural network approach. Mathematical Biosciences and Engineering, 2024, 21(3): 3519-3539. doi: 10.3934/mbe.2024155
    [10] Eugene Kashdan, Svetlana Bunimovich-Mendrazitsky . Hybrid discrete-continuous model of invasive bladder cancer. Mathematical Biosciences and Engineering, 2013, 10(3): 729-742. doi: 10.3934/mbe.2013.10.729
  • Invasive plant populations typically consist of a large (main) focus and several smaller outlier populations. Management of the spread of invasives requires repeated control measures, constrained by limited funding and effort. Posing this as a control problem, we investigate whether it is best to apply control to the main focus, the outlier populations, or some combination of these. We first formulate and solve a discrete-time optimal control problem to determine where control is best applied over a finite time horizon. However, if limited funds are available for control, this optimal solution may not be feasible. In this case, we add an additional constraint to account for the fixed budget and solve the new optimality system. Our results have a variety of practical implications for invasive species management.


  • This article has been cited by:

    1. Hye In Chung, Yuyoung Choi, Jieun Ryu, Seong Woo Jeon, Validating management strategies for invasive species from a spatial perspective: Common ragweed in the Republic of Korea, 2020, 114, 14629011, 52, 10.1016/j.envsci.2020.07.018
    2. Maarten B. Eppinga, Mara Baudena, Elizabeth A. Haber, Max Rietkerk, Martin J. Wassen, Maria J. Santos, Spatially explicit removal strategies increase the efficiency of invasive plant species control, 2021, 1051-0761, 10.1002/eap.2257
    3. Daniel Simberloff, We can eliminate invasions or live with them. Successful management projects, 2009, 11, 1387-3547, 149, 10.1007/s10530-008-9317-z
    4. F. Dane Panetta, Oscar J. Cacho, Marcel Rejmanek, Designing weed containment strategies: An approach based on feasibilities of eradication and containment, 2014, 20, 13669516, 555, 10.1111/ddi.12170
    5. Suzanne Lenhart, Erin Bodine, Peng Zhong, Hem Raj Joshi, 2013, Chapter 9, 978-1-4614-5388-8, 209, 10.1007/978-1-4614-5389-5_9
    6. Narcisa Apreutesei, 2014, Pontryagin maximum principle for a community of several species, 978-1-4799-4601-3, 359, 10.1109/ICSTCC.2014.6982442
    7. Kent F. Kovacs, Rodrigo J. Mercader, Robert G. Haight, Nathan W. Siegert, Deborah G. McCullough, Andrew M. Liebhold, The influence of satellite populations of emerald ash borer on projected economic costs in U.S. communities, 2010–2020, 2011, 92, 03014797, 2170, 10.1016/j.jenvman.2011.03.043
    8. Sophia R.-J. Jang, Jui-Ling Yu, Discrete-time host–parasitoid models with pest control, 2012, 6, 1751-3758, 718, 10.1080/17513758.2012.700074
    9. Daniel Simberloff, 2009, Chapter 11, 978-1-4020-9679-2, 149, 10.1007/978-1-4020-9680-8_11
    10. Hiroyuki Yokomizo, Hugh P. Possingham, Matthew B. Thomas, Yvonne M. Buckley, Managing the impact of invasive species: the value of knowing the density–impact curve, 2009, 19, 1051-0761, 376, 10.1890/08-0442.1
    11. MICHAEL R. KELLY, XUEYING WANG, THE OPTIMAL IMPLEMENTATION OF THETROJAN Y CHROMOSOMEERADICATION STRATEGY OF AN INVASIVE SPECIES, 2017, 25, 0218-3390, 399, 10.1142/S021833901750019X
    12. Chun-Qing Wu, Jingan Cui, 2009, On the Spread of Invasive Plant Species: A Viewpoint from Control, 978-1-4244-2901-1, 1, 10.1109/ICBBE.2009.5163143
    13. Rebecca S. Epanchin-Niell, Alan Hastings, Controlling established invaders: integrating economics and spread dynamics to determine optimal management, 2010, 13, 1461023X, 528, 10.1111/j.1461-0248.2010.01440.x
    14. Eleanor A. Pardini, John M. Drake, Jonathan M. Chase, Tiffany M. Knight, Complex population dynamics and control of the invasive biennial Alliaria petiolata (garlic mustard), 2009, 19, 1051-0761, 387, 10.1890/08-0845.1
    15. Christina J. Edholm, Brigitte Tenhumberg, Chris Guiver, Yu Jin, Stuart Townley, Richard Rebarber, Management of invasive insect species using optimal control theory, 2018, 381, 03043800, 36, 10.1016/j.ecolmodel.2018.04.011
    16. Frances Homans, Tetsuya Horie, Optimal detection strategies for an established invasive pest, 2011, 70, 09218009, 1129, 10.1016/j.ecolecon.2011.01.004
    17. Tiffany Bogich, Katriona Shea, A STATE-DEPENDENT MODEL FOR THE OPTIMAL MANAGEMENT OF AN INVASIVE METAPOPULATION, 2008, 18, 1051-0761, 748, 10.1890/07-0642.1
    18. Alfred Sandström, Magnus Andersson, Anders Asp, Patrik Bohman, Lennart Edsman, Fredrik Engdahl, Per Nyström, Marika Stenberg, Pia Hertonsson, Trude Vrålstad, Wilhelm Granèli, Population collapses in introduced non-indigenous crayfish, 2014, 16, 1387-3547, 1961, 10.1007/s10530-014-0641-1
    19. Emma M. Wilkie, Melanie J. Bishop, Wayne A. O'Connor, The density and spatial arrangement of the invasive oyster C rassostrea gigas determines its impact on settlement of native oyster larvae , 2013, 3, 2045-7758, 4851, 10.1002/ece3.872
    20. Gina M. Skurka Darin, Steve Schoenig, Jacob N. Barney, F. Dane Panetta, Joseph M. DiTomaso, WHIPPET: A novel tool for prioritizing invasive plant populations for regional eradication, 2011, 92, 03014797, 131, 10.1016/j.jenvman.2010.08.013
    21. Peter C. Esselman, Juan J. Schmitter-Soto, J. David Allan, Spatiotemporal dynamics of the spread of African tilapias (Pisces: Oreochromis spp.) into rivers of northeastern Mesoamerica, 2013, 15, 1387-3547, 1471, 10.1007/s10530-012-0384-9
    22. Wandi Ding, Raymond Hendon, Brandon Cathey, Evan Lancaster, Robert Germick, Discrete time optimal control applied to pest control problems, 2014, 7, 1944-4184, 479, 10.2140/involve.2014.7.479
    23. Christopher M. Baker, Target the Source: Optimal Spatiotemporal Resource Allocation for Invasive Species Control, 2017, 10, 1755263X, 41, 10.1111/conl.12236
    24. David G. Delaney, Blaine D. Griffen, Brian Leung, Does consumer injury modify invasion impact?, 2011, 13, 1387-3547, 2935, 10.1007/s10530-011-9975-0
    25. Peter W.J. Baxter, Hugh P. Possingham, Optimizing search strategies for invasive pests: learn before you leap, 2011, 48, 00218901, 86, 10.1111/j.1365-2664.2010.01893.x
    26. Aleksander Kołos, Piotr Banaszuk, How to remove expansive perennial species from sedge-dominated wetlands: results of a long-term experiment in lowland river valleys, 2021, 32, 2037-4631, 881, 10.1007/s12210-021-01030-z
    27. Ismael Soto, Danish A. Ahmed, Paride Balzani, Ross N. Cuthbert, Phillip J. Haubrock, Sigmoidal curves reflect impacts and dynamics of aquatic invasive species, 2023, 872, 00489697, 161818, 10.1016/j.scitotenv.2023.161818
    28. Hye In Chung, Yuyoung Choi, Youngjae Yoo, Robin Engler, Kyungil Lee, Seong Woo Jeon, Integrated spatial model based evaluation methodology for optimal invasive species management: common ragweed in the Republic of Korea, 2022, 17, 1748-9326, 034047, 10.1088/1748-9326/ac4dc7
    29. K V Smith, K L DeLong, C N Boyer, J M Thompson, S M Lenhart, W C Strickland, E R Burgess, Y Tian, J Talley, E T Machtinger, R T Trout Fryxell, Eric Hoffman, A Call for the Development of a Sustainable Pest Management Program for the Economically Important Pest Flies of Livestock: a Beef Cattle Perspective, 2022, 13, 2155-7470, 10.1093/jipm/pmac010
    30. Bo Zhang, Lu Zhai, Gary N. Ervin, David R. Coyle, Effective and timely use of models to inform on-the-ground management of invasive plants, 2023, 1387-3547, 10.1007/s10530-023-03043-1
  • Reader Comments
  • © 2007 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2582) PDF downloads(506) Cited by(30)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog