1.
|
Hong Xiang, Ming-Xuan Zou, Hai-Feng Huo,
Modeling the Effects of Health Education and Early Therapy on Tuberculosis Transmission Dynamics,
2019,
20,
1565-1339,
243,
10.1515/ijnsns-2016-0084
|
|
2.
|
C. P. Bhunu, S. Mushayabasa, J. M. Tchuenche,
A Theoretical Assessment of the Effects of Smoking on the Transmission Dynamics of Tuberculosis,
2011,
73,
0092-8240,
1333,
10.1007/s11538-010-9568-6
|
|
3.
|
Xueyong Zhou, Xiangyun Shi, Huidong Cheng,
Modelling and stability analysis for a tuberculosis model with healthy education and treatment,
2013,
32,
0101-8205,
245,
10.1007/s40314-013-0008-8
|
|
4.
|
Vusi Mpendulo Magagula, S’yanda Nkanyiso Mungwe,
Stability analysis of a virulent code in a network of computers,
2021,
182,
03784754,
296,
10.1016/j.matcom.2020.11.005
|
|
5.
|
Elamin H. Elbasha,
Global Stability of Equilibria in a Two-Sex HPV Vaccination Model,
2008,
70,
0092-8240,
10.1007/s11538-007-9283-0
|
|
6.
|
Asaf Khan, Gul Zaman,
Optimal control strategy of SEIR endemic model with continuous age-structure in the exposed and infectious classes,
2018,
39,
01432087,
1716,
10.1002/oca.2437
|
|
7.
|
Bing Li, Shengqiang Liu, Jing’an Cui, Jia Li,
A Simple Predator-Prey Population Model with Rich Dynamics,
2016,
6,
2076-3417,
151,
10.3390/app6050151
|
|
8.
|
Threshold dynamics for a Tuberculosis model with seasonality,
2012,
9,
1551-0018,
111,
10.3934/mbe.2012.9.111
|
|
9.
|
King-Yeung Lam, Xueying Wang, Tianran Zhang,
Traveling Waves for a Class of Diffusive Disease-Transmission Models with Network Structures,
2018,
50,
0036-1410,
5719,
10.1137/17M1144258
|
|
10.
|
Luju Liu, Yicang Zhou, Jianhong Wu,
Global Dynamics in a TB Model Incorporating Case Detection And Two Treatment Stages,
2008,
38,
0035-7596,
10.1216/RMJ-2008-38-5-1541
|
|
11.
|
Lili Liu, Jinliang Wang, Xianning Liu,
Global stability of an SEIR epidemic model with age-dependent latency and relapse,
2015,
24,
14681218,
18,
10.1016/j.nonrwa.2015.01.001
|
|
12.
|
Julie Nadeau, C. Connell McCluskey,
Global stability for an epidemic model with applications to feline infectious peritonitis and tuberculosis,
2014,
230,
00963003,
473,
10.1016/j.amc.2013.12.124
|
|
13.
|
D. Okuonghae,
Lyapunov functions and global properties of some tuberculosis models,
2015,
48,
1598-5865,
421,
10.1007/s12190-014-0811-4
|
|
14.
|
S.A. Pedro, J.M. Tchuenche,
HIV/AIDS dynamics: Impact of economic classes with transmission from poor clinical settings,
2010,
267,
00225193,
471,
10.1016/j.jtbi.2010.09.019
|
|
15.
|
C. P. BHUNU,
MODELING THE SPREAD OF STREET KIDS IN ZIMBABWE,
2014,
22,
0218-3390,
429,
10.1142/S0218339014500168
|
|
16.
|
P. Magal, C.C. McCluskey, G.F. Webb,
Lyapunov functional and global asymptotic stability for an infection-age model,
2010,
89,
0003-6811,
1109,
10.1080/00036810903208122
|
|
17.
|
Rigobert C. Ngeleja, Livingstone S. Luboobi, Yaw Nkansah-Gyekye,
Plague disease model with weather seasonality,
2018,
302,
00255564,
80,
10.1016/j.mbs.2018.05.013
|
|
18.
|
Xichao Duan, Sanling Yuan, Xuezhi Li,
Global stability of an SVIR model with age of vaccination,
2014,
226,
00963003,
528,
10.1016/j.amc.2013.10.073
|
|
19.
|
Shu Liao, Jin Wang,
Global stability analysis of epidemiological models based on Volterra–Lyapunov stable matrices,
2012,
45,
09600779,
966,
10.1016/j.chaos.2012.03.009
|
|
20.
|
S. B. Chibaya, F. Nyabadza,
Mathematical Modelling of the Potential Role of Supplementary Feeding for People Living with HIV/AIDS,
2019,
5,
2349-5103,
10.1007/s40819-019-0660-9
|
|
21.
|
Rigobert Charles Ngeleja, Livingstone Luboobi, Yaw Nkansah-Gyekye,
Stability Analysis of Bubonic Plague Model with the Causing Pathogen <i>Yersinia pestis</i> in the Environment,
2016,
06,
2164-2648,
120,
10.4236/aid.2016.63016
|
|
22.
|
A. Mhlanga,
Assessing the Impact of Optimal Health Education Programs on the Control of Zoonotic Diseases,
2020,
2020,
1748-670X,
1,
10.1155/2020/6584323
|
|
23.
|
A. Mhlanga, C. P. Bhunu, S. Mushayabasa,
HSV-2 and Substance Abuse amongst Adolescents: Insights through Mathematical Modelling,
2014,
2014,
1110-757X,
1,
10.1155/2014/104819
|
|
24.
|
S. Mushayabasa, C.P. Bhunu, C. Webb, M. Dhlamini,
A mathematical model for assessing the impact of poverty on yaws eradication,
2012,
36,
0307904X,
1653,
10.1016/j.apm.2011.09.022
|
|
25.
|
Jianquan Li, Yanni Xiao, Fengqin Zhang, Yali Yang,
An algebraic approach to proving the global stability of a class of epidemic models,
2012,
13,
14681218,
2006,
10.1016/j.nonrwa.2011.12.022
|
|
26.
|
Said Seif Salim, Eunice Mureithi, Nyimvua Shaban, Joseph Malinzi,
Mathematical modelling of the dynamics of prostate cancer with a curative vaccine,
2021,
11,
24682276,
e00715,
10.1016/j.sciaf.2021.e00715
|
|
27.
|
Samuel Bowong, Jean Jules Tewa,
Global analysis of a dynamical model for transmission of tuberculosis with a general contact rate,
2010,
15,
10075704,
3621,
10.1016/j.cnsns.2010.01.007
|
|
28.
|
Samuel Bowong, Jurgen Kurths,
Modeling and analysis of the transmission dynamics of tuberculosis without and with seasonality,
2012,
67,
0924-090X,
2027,
10.1007/s11071-011-0127-y
|
|
29.
|
Pankaj Singh Rana, Nitin Sharma,
Mathematical modeling and stability analysis of a SI type model for HIV/AIDS,
2020,
23,
0972-0502,
257,
10.1080/09720502.2020.1721921
|
|
30.
|
Y. Ma, C. R. Horsburgh, L. F. White, H. E. Jenkins,
Quantifying TB transmission: a systematic review of reproduction number and serial interval estimates for tuberculosis,
2018,
146,
0950-2688,
1478,
10.1017/S0950268818001760
|
|
31.
|
Isa Abdullahi Baba, Rabiu Aliyu Abdulkadir, Parvaneh Esmaili,
Analysis of tuberculosis model with saturated incidence rate and optimal control,
2020,
540,
03784371,
123237,
10.1016/j.physa.2019.123237
|
|
32.
|
Samuel Bowong,
Optimal control of the transmission dynamics of tuberculosis,
2010,
61,
0924-090X,
729,
10.1007/s11071-010-9683-9
|
|
33.
|
C. Connell McCluskey,
Global stability for a class of mass action systems allowing for latency in tuberculosis,
2008,
338,
0022247X,
518,
10.1016/j.jmaa.2007.05.012
|
|
34.
|
Horst R. Thieme, Hal L. Smith,
Chemostats and epidemics: Competition for nutrients/hosts,
2013,
10,
1551-0018,
1635,
10.3934/mbe.2013.10.1635
|
|
35.
|
Fuxiang Li, Wanbiao Ma,
Dynamics analysis of an HTLV-1 infection model with mitotic division of actively infected cells and delayed CTL immune response,
2018,
41,
01704214,
3000,
10.1002/mma.4797
|
|
36.
|
A. Mhlanga,
Dynamical analysis and control strategies in modelling Ebola virus disease,
2019,
2019,
1687-1847,
10.1186/s13662-019-2392-x
|
|
37.
|
Chayu Yang, Paride O. Lolika, Steady Mushayabasa, Jin Wang,
Modeling the spatiotemporal variations in brucellosis transmission,
2017,
38,
14681218,
49,
10.1016/j.nonrwa.2017.04.006
|
|
38.
|
C. P. BHUNU, S. MUSHAYABASA,
ASSESSING THE EFFECTS OF INTRAVENOUS DRUG USE ON HEPATITIS C TRANSMISSION DYNAMICS,
2011,
19,
0218-3390,
447,
10.1142/S0218339011004056
|
|
39.
|
Bruno Buonomo, Deborah Lacitignola,
Analysis of a tuberculosis model with a case study in Uganda,
2010,
4,
1751-3758,
571,
10.1080/17513750903518441
|
|
40.
|
Saul C. Mpeshe, Heikki Haario, Jean M. Tchuenche,
A Mathematical Model of Rift Valley Fever with Human Host,
2011,
59,
0001-5342,
231,
10.1007/s10441-011-9132-2
|
|
41.
|
Global asymptotic properties of staged models with multiple progression pathways for infectious diseases,
2011,
8,
1551-0018,
1019,
10.3934/mbe.2011.8.1019
|
|
42.
|
Xue-yong Zhou, Jing-an Cui, Zhong-hua Zhang,
Global results for a cholera model with imperfect vaccination,
2012,
349,
00160032,
770,
10.1016/j.jfranklin.2011.09.013
|
|
43.
|
Christian Kuehn,
2015,
Chapter 20,
978-3-319-12315-8,
665,
10.1007/978-3-319-12316-5_20
|
|
44.
|
Sylvie Diane Djiomba Njankou, Farai Nyabadza,
Modelling the potential impact of limited hospital beds on Ebola virus disease dynamics,
2018,
41,
01704214,
8528,
10.1002/mma.4789
|
|
45.
|
Jean Claude Kamgang, Christopher Penniman Thron,
Analysis of Malaria Control Measures’ Effectiveness Using Multistage Vector Model,
2019,
81,
0092-8240,
4366,
10.1007/s11538-019-00637-6
|
|
46.
|
S. MUSHAYABASA, C. P. BHUNU,
MODELING THE IMPACT OF VOLUNTARY TESTING AND TREATMENT ON TUBERCULOSIS TRANSMISSION DYNAMICS,
2012,
05,
1793-5245,
1250029,
10.1142/S1793524511001726
|
|
47.
|
Junli Liu, Tailei Zhang,
Global stability for a tuberculosis model,
2011,
54,
08957177,
836,
10.1016/j.mcm.2011.03.033
|
|
48.
|
GLOBAL DYNAMICS OF A REACTION AND DIFFUSION MODEL FOR AN HTLV-I INFECTION WITH MITOTIC DIVISION OF ACTIVELY INFECTED CELLS,
2017,
7,
2156-907X,
899,
10.11948/2017057
|
|
49.
|
Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes,
2012,
9,
1551-0018,
819,
10.3934/mbe.2012.9.819
|
|
50.
|
Fuxiang Li, Wanbiao Ma, Zhichao Jiang, Dan Li,
Stability and Hopf Bifurcation in a Delayed HIV Infection Model with General Incidence Rate and Immune Impairment,
2015,
2015,
1748-670X,
1,
10.1155/2015/206205
|
|
51.
|
Mohammad Hassan Nematollahi, Ramin Vatankhah, Mojtaba Sharifi,
Nonlinear adaptive control of tuberculosis with consideration of the risk of endogenous reactivation and exogenous reinfection,
2020,
486,
00225193,
110081,
10.1016/j.jtbi.2019.110081
|
|
52.
|
Luju Liu, Weiyun Cai, Yusen Wu,
Global dynamics for an SIR patchy model with susceptibles dispersal,
2012,
2012,
1687-1847,
10.1186/1687-1847-2012-131
|
|
53.
|
Jean Jules Tewa, Samuel Bowong, Boulchard Mewoli,
Mathematical analysis of two-patch model for the dynamical transmission of tuberculosis,
2012,
36,
0307904X,
2466,
10.1016/j.apm.2011.09.004
|
|
54.
|
Cruz Vargas-De-León,
On the global stability of SIS, SIR and SIRS epidemic models with standard incidence,
2011,
44,
09600779,
1106,
10.1016/j.chaos.2011.09.002
|
|
55.
|
A. O. Egonmwan, D. Okuonghae,
Mathematical analysis of a tuberculosis model with imperfect vaccine,
2019,
12,
1793-5245,
1950073,
10.1142/S1793524519500736
|
|
56.
|
Samuel Bowong, Jean Jules Tewa,
Mathematical analysis of a tuberculosis model with differential infectivity,
2009,
14,
10075704,
4010,
10.1016/j.cnsns.2009.02.017
|
|
57.
|
Ran Zhang, Lili Liu, Xiaomei Feng, Zhen Jin,
Existence of traveling wave solutions for a diffusive tuberculosis model with fast and slow progression,
2021,
112,
08939659,
106848,
10.1016/j.aml.2020.106848
|
|
58.
|
Hai-Feng Huo, Shuai-Jun Dang, Yu-Ning Li,
Stability of a Two-Strain Tuberculosis Model with General Contact Rate,
2010,
2010,
1085-3375,
1,
10.1155/2010/293747
|
|
59.
|
Ram P. Sigdel, C. Connell McCluskey,
Global stability for an SEI model of infectious disease with immigration,
2014,
243,
00963003,
684,
10.1016/j.amc.2014.06.020
|
|
60.
|
C. Connell McCluskey,
Using Lyapunov Functions to Construct Lyapunov Functionals for Delay Differential Equations,
2015,
14,
1536-0040,
1,
10.1137/140971683
|
|
61.
|
Jianquan Li, Yali Yang, Yicang Zhou,
Global stability of an epidemic model with latent stage and vaccination,
2011,
12,
14681218,
2163,
10.1016/j.nonrwa.2010.12.030
|
|
62.
|
Isaac Mwangi Wangari, Lewi Stone,
Analysis of a Heroin Epidemic Model with Saturated Treatment Function,
2017,
2017,
1110-757X,
1,
10.1155/2017/1953036
|
|
63.
|
Victor Moreno, Baltazar Espinoza, Kamal Barley, Marlio Paredes, Derdei Bichara, Anuj Mubayi, Carlos Castillo-Chavez,
The role of mobility and health disparities on the transmission dynamics of Tuberculosis,
2017,
14,
1742-4682,
10.1186/s12976-017-0049-6
|
|
64.
|
Rachel A. Nyang’inja, David N. Angwenyi, Cecilia M. Musyoka, Titus O. Orwa,
Mathematical modeling of the effects of public health education on tungiasis—a neglected disease with many challenges in endemic communities,
2018,
2018,
1687-1847,
10.1186/s13662-018-1875-5
|
|
65.
|
Jean Claude Kamgang, Vivient Corneille Kamla, Stéphane Yanick Tchoumi,
Modeling the Dynamics of Malaria Transmission with Bed Net Protection Perspective,
2014,
05,
2152-7385,
3156,
10.4236/am.2014.519298
|
|
66.
|
Horst R. Thieme,
Global stability of the endemic equilibrium in infinite dimension: Lyapunov functions and positive operators,
2011,
250,
00220396,
3772,
10.1016/j.jde.2011.01.007
|
|
67.
|
Connell McCluskey,
Lyapunov functions for disease models with immigration of infected hosts,
2020,
0,
1553-524X,
0,
10.3934/dcdsb.2020296
|
|
68.
|
Edwin Barrios-Rivera, Hanner E. Bastidas-Santacruz, Carmen A. Ramirez-Bernate, Olga Vasilieva,
A synthesized model of tuberculosis transmission featuring treatment abandonment,
2022,
19,
1551-0018,
10882,
10.3934/mbe.2022509
|
|
69.
|
Lemjini Masandawa, Silas Steven Mirau, Isambi Sailon Mbalawata,
Mathematical modeling of COVID-19 transmission dynamics between healthcare workers and community,
2021,
29,
22113797,
104731,
10.1016/j.rinp.2021.104731
|
|
70.
|
S. Bowong, A. Temgoua, Y. Malong, J. Mbang,
Mathematical Study of a Class of Epidemiological Models with Multiple Infectious Stages,
2020,
21,
2191-0294,
259,
10.1515/ijnsns-2017-0244
|
|
71.
|
Fatima Sulayman, Farah Aini Abdullah, Chenquan Gan,
Analysis of a Tuberculosis Infection Model considering the Influence of Saturated Recovery (Treatment),
2021,
2021,
1099-0526,
1,
10.1155/2021/1805651
|
|
72.
|
Chengxia Lei, Yi Shen, Guanghui Zhang, Yuxiang Zhang,
Analysis on a diffusive SEI epidemic model with/without immigration of infected hosts,
2021,
14,
1937-1632,
4259,
10.3934/dcdss.2021131
|
|
73.
|
Jiaji Pan, Zhongxiang Chen, Yixuan He, Tongliang Liu, Xi Cheng, Jun Xiao, Hao Feng,
Why Controlling the Asymptomatic Infection Is Important: A Modelling Study with Stability and Sensitivity Analysis,
2022,
6,
2504-3110,
197,
10.3390/fractalfract6040197
|
|
74.
|
Shanjing Ren, Lingling Li,
Global stability mathematical analysis for virus transmission model with latent age structure,
2022,
19,
1551-0018,
3337,
10.3934/mbe.2022154
|
|
75.
|
A. Mhlanga, T. V. Mupedza,
A patchy theoretical model for the transmission dynamics of SARS-Cov-2 with optimal control,
2022,
12,
2045-2322,
10.1038/s41598-022-21553-1
|
|
76.
|
Tesfaye Tadesse Ega, Rigobert Charles Ngeleja, Suresh Rasappan,
Mathematical Model Formulation and Analysis for COVID-19 Transmission with Virus Transfer Media and Quarantine on Arrival,
2022,
2022,
2577-7408,
1,
10.1155/2022/2955885
|
|
77.
|
Zahurul Islam, Shohel Ahmed, M. M. Rahman, M. F. Karim, M. R. Amin, Ryusuke Kon,
Global Stability Analysis and Parameter Estimation for a Diphtheria Model: A Case Study of an Epidemic in Rohingya Refugee Camp in Bangladesh,
2022,
2022,
1748-6718,
1,
10.1155/2022/6545179
|
|
78.
|
Nitesh Narayan, Rishi Kumar Jha, Anshuman Singh,
A Differential Epidemic Model for Information, Misinformation, and Disinformation in Online Social Networks,
2022,
18,
1552-6283,
1,
10.4018/IJSWIS.300827
|
|
79.
|
Dipo Aldila, Joseph Páez Chávez, Karunia Putra Wijaya, Naleen Chaminda Ganegoda, Gracia Monalisa Simorangkir, Hengki Tasman, Edy Soewono,
A tuberculosis epidemic model as a proxy for the assessment of the novel M72/AS01E vaccine,
2023,
120,
10075704,
107162,
10.1016/j.cnsns.2023.107162
|
|
80.
|
Solomon Kadaleka, Shirley Abelman, Jean M. Tchuenche,
A Human-Bovine Schistosomiasis Mathematical Model with Treatment and Mollusciciding,
2021,
69,
0001-5342,
511,
10.1007/s10441-021-09416-0
|
|
81.
|
Dipankar GHOSH, Prasun Kumar SANTRA, Ghanshaym Singha MAHAPATRA,
A three-component prey-predator system with interval number,
2023,
3,
2791-8564,
1,
10.53391/mmnsa.1273908
|
|
82.
|
Anna D. Fome, Herieth Rwezaura, Mamadou L. Diagne, Shannon Collinson, Jean M. Tchuenche,
A deterministic Susceptible-Infected-Recovered model for studying the impact of media on epidemic dynamics,
2023,
27724425,
100189,
10.1016/j.health.2023.100189
|
|
83.
|
Kshama Jain, Anuradha Bhattacharjee,
2023,
2649,
0094-243X,
030056,
10.1063/5.0114135
|
|
84.
|
Lei Wang, Zhidong Teng, Xi Huo, Kai Wang, Xiaomei Feng,
A stochastic dynamical model for nosocomial infections with co-circulation of sensitive and resistant bacterial strains,
2023,
87,
0303-6812,
10.1007/s00285-023-01968-8
|
|
85.
|
Pooja Khoda, Vijay Pal Bajiya, Sada Nand Prasad,
Effective strategies toward controlling tuberculosis: optimal control and cost-effectiveness analysis,
2025,
140,
2190-5444,
10.1140/epjp/s13360-025-05978-x
|
|
86.
|
Saiful Islam Rokib, Shahadat Hossain, Maria Binte Malek, Fariha Akter Ruhi, Uzzwal Kumar Mallick, Waleed Adel,
Mathematical Analysis on Transmission of Nosocomial Infection Applying Combination Therapy,
2025,
2025,
1110-757X,
10.1155/jama/3002490
|
|