Lyapunov functions for tuberculosis models with fast and slow progression

  • Received: 01 September 2005 Accepted: 29 June 2018 Published: 01 August 2006
  • MSC : 92D30, 34D23.

  • The spread of tuberculosis is studied through two models which include fast and slow progression to the infected class. For each model, Lyapunov functions are used to show that when the basic reproduction number is less than or equal to one, the disease-free equilibrium is globally asymptotically stable, and when it is greater than one there is an endemic equilibrium which is globally asymptotically stable.

    Citation: C. Connell Mccluskey. Lyapunov functions for tuberculosis models with fast and slow progression[J]. Mathematical Biosciences and Engineering, 2006, 3(4): 603-614. doi: 10.3934/mbe.2006.3.603

    Related Papers:

    [1] Ya-Dong Zhang, Hai-Feng Huo, Hong Xiang . Dynamics of tuberculosis with fast and slow progression and media coverage. Mathematical Biosciences and Engineering, 2019, 16(3): 1150-1170. doi: 10.3934/mbe.2019055
    [2] Shanjing Ren, Lingling Li . Global stability mathematical analysis for virus transmission model with latent age structure. Mathematical Biosciences and Engineering, 2022, 19(4): 3337-3349. doi: 10.3934/mbe.2022154
    [3] Shanjing Ren . Global stability in a tuberculosis model of imperfect treatment with age-dependent latency and relapse. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1337-1360. doi: 10.3934/mbe.2017069
    [4] Rui Ma, Jinjin Han, Li Ding . Finite-time trajectory tracking control of quadrotor UAV via adaptive RBF neural network with lumped uncertainties. Mathematical Biosciences and Engineering, 2023, 20(2): 1841-1855. doi: 10.3934/mbe.2023084
    [5] Georgi Kapitanov . A double age-structured model of the co-infection of tuberculosis and HIV. Mathematical Biosciences and Engineering, 2015, 12(1): 23-40. doi: 10.3934/mbe.2015.12.23
    [6] OPhir Nave, Shlomo Hareli, Miriam Elbaz, Itzhak Hayim Iluz, Svetlana Bunimovich-Mendrazitsky . BCG and IL − 2 model for bladder cancer treatment with fast and slow dynamics based on SPVF method—stability analysis. Mathematical Biosciences and Engineering, 2019, 16(5): 5346-5379. doi: 10.3934/mbe.2019267
    [7] C. Connell McCluskey . Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes. Mathematical Biosciences and Engineering, 2012, 9(4): 819-841. doi: 10.3934/mbe.2012.9.819
    [8] Andrey V. Melnik, Andrei Korobeinikov . Global asymptotic properties of staged models with multiple progression pathways for infectious diseases. Mathematical Biosciences and Engineering, 2011, 8(4): 1019-1034. doi: 10.3934/mbe.2011.8.1019
    [9] Andrey V. Melnik, Andrei Korobeinikov . Lyapunov functions and global stability for SIR and SEIR models withage-dependent susceptibility. Mathematical Biosciences and Engineering, 2013, 10(2): 369-378. doi: 10.3934/mbe.2013.10.369
    [10] Abdennasser Chekroun, Mohammed Nor Frioui, Toshikazu Kuniya, Tarik Mohammed Touaoula . Global stability of an age-structured epidemic model with general Lyapunov functional. Mathematical Biosciences and Engineering, 2019, 16(3): 1525-1553. doi: 10.3934/mbe.2019073
  • The spread of tuberculosis is studied through two models which include fast and slow progression to the infected class. For each model, Lyapunov functions are used to show that when the basic reproduction number is less than or equal to one, the disease-free equilibrium is globally asymptotically stable, and when it is greater than one there is an endemic equilibrium which is globally asymptotically stable.


  • This article has been cited by:

    1. Hong Xiang, Ming-Xuan Zou, Hai-Feng Huo, Modeling the Effects of Health Education and Early Therapy on Tuberculosis Transmission Dynamics, 2019, 20, 1565-1339, 243, 10.1515/ijnsns-2016-0084
    2. C. P. Bhunu, S. Mushayabasa, J. M. Tchuenche, A Theoretical Assessment of the Effects of Smoking on the Transmission Dynamics of Tuberculosis, 2011, 73, 0092-8240, 1333, 10.1007/s11538-010-9568-6
    3. Xueyong Zhou, Xiangyun Shi, Huidong Cheng, Modelling and stability analysis for a tuberculosis model with healthy education and treatment, 2013, 32, 0101-8205, 245, 10.1007/s40314-013-0008-8
    4. Vusi Mpendulo Magagula, S’yanda Nkanyiso Mungwe, Stability analysis of a virulent code in a network of computers, 2021, 182, 03784754, 296, 10.1016/j.matcom.2020.11.005
    5. Elamin H. Elbasha, Global Stability of Equilibria in a Two-Sex HPV Vaccination Model, 2008, 70, 0092-8240, 10.1007/s11538-007-9283-0
    6. Asaf Khan, Gul Zaman, Optimal control strategy of SEIR endemic model with continuous age-structure in the exposed and infectious classes, 2018, 39, 01432087, 1716, 10.1002/oca.2437
    7. Bing Li, Shengqiang Liu, Jing’an Cui, Jia Li, A Simple Predator-Prey Population Model with Rich Dynamics, 2016, 6, 2076-3417, 151, 10.3390/app6050151
    8. Threshold dynamics for a Tuberculosis model with seasonality, 2012, 9, 1551-0018, 111, 10.3934/mbe.2012.9.111
    9. King-Yeung Lam, Xueying Wang, Tianran Zhang, Traveling Waves for a Class of Diffusive Disease-Transmission Models with Network Structures, 2018, 50, 0036-1410, 5719, 10.1137/17M1144258
    10. Luju Liu, Yicang Zhou, Jianhong Wu, Global Dynamics in a TB Model Incorporating Case Detection And Two Treatment Stages, 2008, 38, 0035-7596, 10.1216/RMJ-2008-38-5-1541
    11. Lili Liu, Jinliang Wang, Xianning Liu, Global stability of an SEIR epidemic model with age-dependent latency and relapse, 2015, 24, 14681218, 18, 10.1016/j.nonrwa.2015.01.001
    12. Julie Nadeau, C. Connell McCluskey, Global stability for an epidemic model with applications to feline infectious peritonitis and tuberculosis, 2014, 230, 00963003, 473, 10.1016/j.amc.2013.12.124
    13. D. Okuonghae, Lyapunov functions and global properties of some tuberculosis models, 2015, 48, 1598-5865, 421, 10.1007/s12190-014-0811-4
    14. S.A. Pedro, J.M. Tchuenche, HIV/AIDS dynamics: Impact of economic classes with transmission from poor clinical settings, 2010, 267, 00225193, 471, 10.1016/j.jtbi.2010.09.019
    15. C. P. BHUNU, MODELING THE SPREAD OF STREET KIDS IN ZIMBABWE, 2014, 22, 0218-3390, 429, 10.1142/S0218339014500168
    16. P. Magal, C.C. McCluskey, G.F. Webb, Lyapunov functional and global asymptotic stability for an infection-age model, 2010, 89, 0003-6811, 1109, 10.1080/00036810903208122
    17. Rigobert C. Ngeleja, Livingstone S. Luboobi, Yaw Nkansah-Gyekye, Plague disease model with weather seasonality, 2018, 302, 00255564, 80, 10.1016/j.mbs.2018.05.013
    18. Xichao Duan, Sanling Yuan, Xuezhi Li, Global stability of an SVIR model with age of vaccination, 2014, 226, 00963003, 528, 10.1016/j.amc.2013.10.073
    19. Shu Liao, Jin Wang, Global stability analysis of epidemiological models based on Volterra–Lyapunov stable matrices, 2012, 45, 09600779, 966, 10.1016/j.chaos.2012.03.009
    20. S. B. Chibaya, F. Nyabadza, Mathematical Modelling of the Potential Role of Supplementary Feeding for People Living with HIV/AIDS, 2019, 5, 2349-5103, 10.1007/s40819-019-0660-9
    21. Rigobert Charles Ngeleja, Livingstone Luboobi, Yaw Nkansah-Gyekye, Stability Analysis of Bubonic Plague Model with the Causing Pathogen <i>Yersinia pestis</i> in the Environment, 2016, 06, 2164-2648, 120, 10.4236/aid.2016.63016
    22. A. Mhlanga, Assessing the Impact of Optimal Health Education Programs on the Control of Zoonotic Diseases, 2020, 2020, 1748-670X, 1, 10.1155/2020/6584323
    23. A. Mhlanga, C. P. Bhunu, S. Mushayabasa, HSV-2 and Substance Abuse amongst Adolescents: Insights through Mathematical Modelling, 2014, 2014, 1110-757X, 1, 10.1155/2014/104819
    24. S. Mushayabasa, C.P. Bhunu, C. Webb, M. Dhlamini, A mathematical model for assessing the impact of poverty on yaws eradication, 2012, 36, 0307904X, 1653, 10.1016/j.apm.2011.09.022
    25. Jianquan Li, Yanni Xiao, Fengqin Zhang, Yali Yang, An algebraic approach to proving the global stability of a class of epidemic models, 2012, 13, 14681218, 2006, 10.1016/j.nonrwa.2011.12.022
    26. Said Seif Salim, Eunice Mureithi, Nyimvua Shaban, Joseph Malinzi, Mathematical modelling of the dynamics of prostate cancer with a curative vaccine, 2021, 11, 24682276, e00715, 10.1016/j.sciaf.2021.e00715
    27. Samuel Bowong, Jean Jules Tewa, Global analysis of a dynamical model for transmission of tuberculosis with a general contact rate, 2010, 15, 10075704, 3621, 10.1016/j.cnsns.2010.01.007
    28. Samuel Bowong, Jurgen Kurths, Modeling and analysis of the transmission dynamics of tuberculosis without and with seasonality, 2012, 67, 0924-090X, 2027, 10.1007/s11071-011-0127-y
    29. Pankaj Singh Rana, Nitin Sharma, Mathematical modeling and stability analysis of a SI type model for HIV/AIDS, 2020, 23, 0972-0502, 257, 10.1080/09720502.2020.1721921
    30. Y. Ma, C. R. Horsburgh, L. F. White, H. E. Jenkins, Quantifying TB transmission: a systematic review of reproduction number and serial interval estimates for tuberculosis, 2018, 146, 0950-2688, 1478, 10.1017/S0950268818001760
    31. Isa Abdullahi Baba, Rabiu Aliyu Abdulkadir, Parvaneh Esmaili, Analysis of tuberculosis model with saturated incidence rate and optimal control, 2020, 540, 03784371, 123237, 10.1016/j.physa.2019.123237
    32. Samuel Bowong, Optimal control of the transmission dynamics of tuberculosis, 2010, 61, 0924-090X, 729, 10.1007/s11071-010-9683-9
    33. C. Connell McCluskey, Global stability for a class of mass action systems allowing for latency in tuberculosis, 2008, 338, 0022247X, 518, 10.1016/j.jmaa.2007.05.012
    34. Horst R. Thieme, Hal L. Smith, Chemostats and epidemics: Competition for nutrients/hosts, 2013, 10, 1551-0018, 1635, 10.3934/mbe.2013.10.1635
    35. Fuxiang Li, Wanbiao Ma, Dynamics analysis of an HTLV-1 infection model with mitotic division of actively infected cells and delayed CTL immune response, 2018, 41, 01704214, 3000, 10.1002/mma.4797
    36. A. Mhlanga, Dynamical analysis and control strategies in modelling Ebola virus disease, 2019, 2019, 1687-1847, 10.1186/s13662-019-2392-x
    37. Chayu Yang, Paride O. Lolika, Steady Mushayabasa, Jin Wang, Modeling the spatiotemporal variations in brucellosis transmission, 2017, 38, 14681218, 49, 10.1016/j.nonrwa.2017.04.006
    38. C. P. BHUNU, S. MUSHAYABASA, ASSESSING THE EFFECTS OF INTRAVENOUS DRUG USE ON HEPATITIS C TRANSMISSION DYNAMICS, 2011, 19, 0218-3390, 447, 10.1142/S0218339011004056
    39. Bruno Buonomo, Deborah Lacitignola, Analysis of a tuberculosis model with a case study in Uganda, 2010, 4, 1751-3758, 571, 10.1080/17513750903518441
    40. Saul C. Mpeshe, Heikki Haario, Jean M. Tchuenche, A Mathematical Model of Rift Valley Fever with Human Host, 2011, 59, 0001-5342, 231, 10.1007/s10441-011-9132-2
    41. Global asymptotic properties of staged models with multiple progression pathways for infectious diseases, 2011, 8, 1551-0018, 1019, 10.3934/mbe.2011.8.1019
    42. Xue-yong Zhou, Jing-an Cui, Zhong-hua Zhang, Global results for a cholera model with imperfect vaccination, 2012, 349, 00160032, 770, 10.1016/j.jfranklin.2011.09.013
    43. Christian Kuehn, 2015, Chapter 20, 978-3-319-12315-8, 665, 10.1007/978-3-319-12316-5_20
    44. Sylvie Diane Djiomba Njankou, Farai Nyabadza, Modelling the potential impact of limited hospital beds on Ebola virus disease dynamics, 2018, 41, 01704214, 8528, 10.1002/mma.4789
    45. Jean Claude Kamgang, Christopher Penniman Thron, Analysis of Malaria Control Measures’ Effectiveness Using Multistage Vector Model, 2019, 81, 0092-8240, 4366, 10.1007/s11538-019-00637-6
    46. S. MUSHAYABASA, C. P. BHUNU, MODELING THE IMPACT OF VOLUNTARY TESTING AND TREATMENT ON TUBERCULOSIS TRANSMISSION DYNAMICS, 2012, 05, 1793-5245, 1250029, 10.1142/S1793524511001726
    47. Junli Liu, Tailei Zhang, Global stability for a tuberculosis model, 2011, 54, 08957177, 836, 10.1016/j.mcm.2011.03.033
    48. GLOBAL DYNAMICS OF A REACTION AND DIFFUSION MODEL FOR AN HTLV-I INFECTION WITH MITOTIC DIVISION OF ACTIVELY INFECTED CELLS, 2017, 7, 2156-907X, 899, 10.11948/2017057
    49. Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes, 2012, 9, 1551-0018, 819, 10.3934/mbe.2012.9.819
    50. Fuxiang Li, Wanbiao Ma, Zhichao Jiang, Dan Li, Stability and Hopf Bifurcation in a Delayed HIV Infection Model with General Incidence Rate and Immune Impairment, 2015, 2015, 1748-670X, 1, 10.1155/2015/206205
    51. Mohammad Hassan Nematollahi, Ramin Vatankhah, Mojtaba Sharifi, Nonlinear adaptive control of tuberculosis with consideration of the risk of endogenous reactivation and exogenous reinfection, 2020, 486, 00225193, 110081, 10.1016/j.jtbi.2019.110081
    52. Luju Liu, Weiyun Cai, Yusen Wu, Global dynamics for an SIR patchy model with susceptibles dispersal, 2012, 2012, 1687-1847, 10.1186/1687-1847-2012-131
    53. Jean Jules Tewa, Samuel Bowong, Boulchard Mewoli, Mathematical analysis of two-patch model for the dynamical transmission of tuberculosis, 2012, 36, 0307904X, 2466, 10.1016/j.apm.2011.09.004
    54. Cruz Vargas-De-León, On the global stability of SIS, SIR and SIRS epidemic models with standard incidence, 2011, 44, 09600779, 1106, 10.1016/j.chaos.2011.09.002
    55. A. O. Egonmwan, D. Okuonghae, Mathematical analysis of a tuberculosis model with imperfect vaccine, 2019, 12, 1793-5245, 1950073, 10.1142/S1793524519500736
    56. Samuel Bowong, Jean Jules Tewa, Mathematical analysis of a tuberculosis model with differential infectivity, 2009, 14, 10075704, 4010, 10.1016/j.cnsns.2009.02.017
    57. Ran Zhang, Lili Liu, Xiaomei Feng, Zhen Jin, Existence of traveling wave solutions for a diffusive tuberculosis model with fast and slow progression, 2021, 112, 08939659, 106848, 10.1016/j.aml.2020.106848
    58. Hai-Feng Huo, Shuai-Jun Dang, Yu-Ning Li, Stability of a Two-Strain Tuberculosis Model with General Contact Rate, 2010, 2010, 1085-3375, 1, 10.1155/2010/293747
    59. Ram P. Sigdel, C. Connell McCluskey, Global stability for an SEI model of infectious disease with immigration, 2014, 243, 00963003, 684, 10.1016/j.amc.2014.06.020
    60. C. Connell McCluskey, Using Lyapunov Functions to Construct Lyapunov Functionals for Delay Differential Equations, 2015, 14, 1536-0040, 1, 10.1137/140971683
    61. Jianquan Li, Yali Yang, Yicang Zhou, Global stability of an epidemic model with latent stage and vaccination, 2011, 12, 14681218, 2163, 10.1016/j.nonrwa.2010.12.030
    62. Isaac Mwangi Wangari, Lewi Stone, Analysis of a Heroin Epidemic Model with Saturated Treatment Function, 2017, 2017, 1110-757X, 1, 10.1155/2017/1953036
    63. Victor Moreno, Baltazar Espinoza, Kamal Barley, Marlio Paredes, Derdei Bichara, Anuj Mubayi, Carlos Castillo-Chavez, The role of mobility and health disparities on the transmission dynamics of Tuberculosis, 2017, 14, 1742-4682, 10.1186/s12976-017-0049-6
    64. Rachel A. Nyang’inja, David N. Angwenyi, Cecilia M. Musyoka, Titus O. Orwa, Mathematical modeling of the effects of public health education on tungiasis—a neglected disease with many challenges in endemic communities, 2018, 2018, 1687-1847, 10.1186/s13662-018-1875-5
    65. Jean Claude Kamgang, Vivient Corneille Kamla, Stéphane Yanick Tchoumi, Modeling the Dynamics of Malaria Transmission with Bed Net Protection Perspective, 2014, 05, 2152-7385, 3156, 10.4236/am.2014.519298
    66. Horst R. Thieme, Global stability of the endemic equilibrium in infinite dimension: Lyapunov functions and positive operators, 2011, 250, 00220396, 3772, 10.1016/j.jde.2011.01.007
    67. Connell McCluskey, Lyapunov functions for disease models with immigration of infected hosts, 2020, 0, 1553-524X, 0, 10.3934/dcdsb.2020296
    68. Edwin Barrios-Rivera, Hanner E. Bastidas-Santacruz, Carmen A. Ramirez-Bernate, Olga Vasilieva, A synthesized model of tuberculosis transmission featuring treatment abandonment, 2022, 19, 1551-0018, 10882, 10.3934/mbe.2022509
    69. Lemjini Masandawa, Silas Steven Mirau, Isambi Sailon Mbalawata, Mathematical modeling of COVID-19 transmission dynamics between healthcare workers and community, 2021, 29, 22113797, 104731, 10.1016/j.rinp.2021.104731
    70. S. Bowong, A. Temgoua, Y. Malong, J. Mbang, Mathematical Study of a Class of Epidemiological Models with Multiple Infectious Stages, 2020, 21, 2191-0294, 259, 10.1515/ijnsns-2017-0244
    71. Fatima Sulayman, Farah Aini Abdullah, Chenquan Gan, Analysis of a Tuberculosis Infection Model considering the Influence of Saturated Recovery (Treatment), 2021, 2021, 1099-0526, 1, 10.1155/2021/1805651
    72. Chengxia Lei, Yi Shen, Guanghui Zhang, Yuxiang Zhang, Analysis on a diffusive SEI epidemic model with/without immigration of infected hosts, 2021, 14, 1937-1632, 4259, 10.3934/dcdss.2021131
    73. Jiaji Pan, Zhongxiang Chen, Yixuan He, Tongliang Liu, Xi Cheng, Jun Xiao, Hao Feng, Why Controlling the Asymptomatic Infection Is Important: A Modelling Study with Stability and Sensitivity Analysis, 2022, 6, 2504-3110, 197, 10.3390/fractalfract6040197
    74. Shanjing Ren, Lingling Li, Global stability mathematical analysis for virus transmission model with latent age structure, 2022, 19, 1551-0018, 3337, 10.3934/mbe.2022154
    75. A. Mhlanga, T. V. Mupedza, A patchy theoretical model for the transmission dynamics of SARS-Cov-2 with optimal control, 2022, 12, 2045-2322, 10.1038/s41598-022-21553-1
    76. Tesfaye Tadesse Ega, Rigobert Charles Ngeleja, Suresh Rasappan, Mathematical Model Formulation and Analysis for COVID-19 Transmission with Virus Transfer Media and Quarantine on Arrival, 2022, 2022, 2577-7408, 1, 10.1155/2022/2955885
    77. Zahurul Islam, Shohel Ahmed, M. M. Rahman, M. F. Karim, M. R. Amin, Ryusuke Kon, Global Stability Analysis and Parameter Estimation for a Diphtheria Model: A Case Study of an Epidemic in Rohingya Refugee Camp in Bangladesh, 2022, 2022, 1748-6718, 1, 10.1155/2022/6545179
    78. Nitesh Narayan, Rishi Kumar Jha, Anshuman Singh, A Differential Epidemic Model for Information, Misinformation, and Disinformation in Online Social Networks, 2022, 18, 1552-6283, 1, 10.4018/IJSWIS.300827
    79. Dipo Aldila, Joseph Páez Chávez, Karunia Putra Wijaya, Naleen Chaminda Ganegoda, Gracia Monalisa Simorangkir, Hengki Tasman, Edy Soewono, A tuberculosis epidemic model as a proxy for the assessment of the novel M72/AS01E vaccine, 2023, 120, 10075704, 107162, 10.1016/j.cnsns.2023.107162
    80. Solomon Kadaleka, Shirley Abelman, Jean M. Tchuenche, A Human-Bovine Schistosomiasis Mathematical Model with Treatment and Mollusciciding, 2021, 69, 0001-5342, 511, 10.1007/s10441-021-09416-0
    81. Dipankar GHOSH, Prasun Kumar SANTRA, Ghanshaym Singha MAHAPATRA, A three-component prey-predator system with interval number, 2023, 3, 2791-8564, 1, 10.53391/mmnsa.1273908
    82. Anna D. Fome, Herieth Rwezaura, Mamadou L. Diagne, Shannon Collinson, Jean M. Tchuenche, A deterministic Susceptible-Infected-Recovered model for studying the impact of media on epidemic dynamics, 2023, 27724425, 100189, 10.1016/j.health.2023.100189
    83. Kshama Jain, Anuradha Bhattacharjee, 2023, 2649, 0094-243X, 030056, 10.1063/5.0114135
    84. Lei Wang, Zhidong Teng, Xi Huo, Kai Wang, Xiaomei Feng, A stochastic dynamical model for nosocomial infections with co-circulation of sensitive and resistant bacterial strains, 2023, 87, 0303-6812, 10.1007/s00285-023-01968-8
    85. Pooja Khoda, Vijay Pal Bajiya, Sada Nand Prasad, Effective strategies toward controlling tuberculosis: optimal control and cost-effectiveness analysis, 2025, 140, 2190-5444, 10.1140/epjp/s13360-025-05978-x
    86. Saiful Islam Rokib, Shahadat Hossain, Maria Binte Malek, Fariha Akter Ruhi, Uzzwal Kumar Mallick, Waleed Adel, Mathematical Analysis on Transmission of Nosocomial Infection Applying Combination Therapy, 2025, 2025, 1110-757X, 10.1155/jama/3002490
  • Reader Comments
  • © 2006 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3674) PDF downloads(722) Cited by(85)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog