The trajectory tracking control of the quadrotor with model uncertainty and time-varying interference is studied. The RBF neural network is combined with the global fast terminal sliding mode (GFTSM) control method to converge tracking errors in finite time. To ensure the stability of the system, an adaptive law is designed to adjust the weight of the neural network by the Lyapunov method. The overall novelty of this paper is threefold, 1) Owing to the use of a global fast sliding mode surface, the proposed controller has no problem with slow convergence near the equilibrium point inherently existing in the terminal sliding mode control. 2) Benefiting from the novel equivalent control computation mechanism, the external disturbances and the upper bound of the disturbance are estimated by the proposed controller, and the unexpected chattering phenomenon is significantly attenuated. 3) The stability and finite-time convergence of the overall closed-loop system are strictly proven. The simulation results indicated that the proposed method achieves faster response speed and smoother control effect than traditional GFTSM.
Citation: Rui Ma, Jinjin Han, Li Ding. Finite-time trajectory tracking control of quadrotor UAV via adaptive RBF neural network with lumped uncertainties[J]. Mathematical Biosciences and Engineering, 2023, 20(2): 1841-1855. doi: 10.3934/mbe.2023084
[1] | Jordy Jose Cevallos-Chavez, Fabio Augustu Milner . The impact of partner selection in the transmission dynamics of sexually transmitted viral infections. Mathematical Biosciences and Engineering, 2025, 22(6): 1399-1427. doi: 10.3934/mbe.2025053 |
[2] | Hai-Feng Huo, Qian Yang, Hong Xiang . Dynamics of an edge-based SEIR model for sexually transmitted diseases. Mathematical Biosciences and Engineering, 2020, 17(1): 669-699. doi: 10.3934/mbe.2020035 |
[3] | Carlos Bustamante Orellana, Jordan Lyerla, Aaron Martin, Fabio Milner . Sexually transmitted infections and dating app use. Mathematical Biosciences and Engineering, 2024, 21(3): 3999-4035. doi: 10.3934/mbe.2024177 |
[4] | Shuixian Yan, Sanling Yuan . Critical value in a SIR network model with heterogeneous infectiousness and susceptibility. Mathematical Biosciences and Engineering, 2020, 17(5): 5802-5811. doi: 10.3934/mbe.2020310 |
[5] | Wenhao Chen, Guo Lin, Shuxia Pan . Propagation dynamics in an SIRS model with general incidence functions. Mathematical Biosciences and Engineering, 2023, 20(4): 6751-6775. doi: 10.3934/mbe.2023291 |
[6] | Daniel Maxin, Fabio Augusto Milner . The effect of nonreproductive groups on persistent sexually transmitted diseases. Mathematical Biosciences and Engineering, 2007, 4(3): 505-522. doi: 10.3934/mbe.2007.4.505 |
[7] | Haijun Hu, Xupu Yuan, Lihong Huang, Chuangxia Huang . Global dynamics of an SIRS model with demographics and transfer from infectious to susceptible on heterogeneous networks. Mathematical Biosciences and Engineering, 2019, 16(5): 5729-5749. doi: 10.3934/mbe.2019286 |
[8] | Mina Youssef, Caterina Scoglio . Mitigation of epidemics in contact networks through optimal contact adaptation. Mathematical Biosciences and Engineering, 2013, 10(4): 1227-1251. doi: 10.3934/mbe.2013.10.1227 |
[9] | Chandrani Banerjee, Linda J. S. Allen, Jorge Salazar-Bravo . Models for an arenavirus infection in a rodent population: consequences of horizontal, vertical and sexual transmission. Mathematical Biosciences and Engineering, 2008, 5(4): 617-645. doi: 10.3934/mbe.2008.5.617 |
[10] | Carlos Castillo-Chavez, Bingtuan Li . Spatial spread of sexually transmitted diseases within susceptible populations at demographic steady state. Mathematical Biosciences and Engineering, 2008, 5(4): 713-727. doi: 10.3934/mbe.2008.5.713 |
The trajectory tracking control of the quadrotor with model uncertainty and time-varying interference is studied. The RBF neural network is combined with the global fast terminal sliding mode (GFTSM) control method to converge tracking errors in finite time. To ensure the stability of the system, an adaptive law is designed to adjust the weight of the neural network by the Lyapunov method. The overall novelty of this paper is threefold, 1) Owing to the use of a global fast sliding mode surface, the proposed controller has no problem with slow convergence near the equilibrium point inherently existing in the terminal sliding mode control. 2) Benefiting from the novel equivalent control computation mechanism, the external disturbances and the upper bound of the disturbance are estimated by the proposed controller, and the unexpected chattering phenomenon is significantly attenuated. 3) The stability and finite-time convergence of the overall closed-loop system are strictly proven. The simulation results indicated that the proposed method achieves faster response speed and smoother control effect than traditional GFTSM.
[1] |
M. assanalian, A. Abdelkefi, Classifications, applications, and design challenges of drones: A review, Prog. Aerosp. Sci., 91 (2017), 99–131. https://doi.org/10.1016/j.paerosci.2017.04.003 doi: 10.1016/j.paerosci.2017.04.003
![]() |
[2] |
M. Labbadi, M. Cherkaoui, Adaptive fractional-order nonsingular fast terminal sliding mode based robust tracking control of quadrotor UAV with Gaussian random disturbances and uncertainties, IEEE Trans. Aerosp. Electron. Syst., 57 (2021), 2265–2277. https://doi.org/10.1109/TAES.2021.3053109 doi: 10.1109/TAES.2021.3053109
![]() |
[3] |
A. Noordin, M. A. Mohd Basri, Z. Mohamed, Adaptive PID controller using sliding mode control approaches for quadrotor UAV attitude and position stabilization, Arabian J. Sci. Eng., 46 (2021), 963–981. https://doi.org/10.1007/s13369-020-04742-w doi: 10.1007/s13369-020-04742-w
![]() |
[4] | F. W. Alsaade, H. Jahanshahi, Q. Yao, M. S. Al-zahranidAli, S. Alzahranie, A new neural network-based optimal mixed H2/H∞ control for a modified unmanned aerial vehicle subject to control input constraints, Adv. Space Res., (2022), forthcoming. https://doi.org/10.1016/j.asr.2022.02.012 |
[5] |
L. Wan, Y. Su, H. Zhang, Y. Tang, Global fast terminal sliding mode control based on radial basis function neural network for course keeping of unmanned surface vehicle, Int. J. Adv. Rob. Syst., 16 (2019), 1729881419829961. https://doi.org/10.1177/1729881419829961 doi: 10.1177/1729881419829961
![]() |
[6] |
J. Zhang, D. Gu, C. Deng, B. Wen, Robust and adaptive backstepping control for hexacopter UAVs, IEEE Access, 7 (2019), 163502–163514. https://doi.org/10.1109/ACCESS.2019.2951282 doi: 10.1109/ACCESS.2019.2951282
![]() |
[7] |
X. Zhang, Y. Wang, G. Zhu, X. Chen, Z. Li, C. Wang, et al., Compound adaptive fuzzy quantized control for quadrotor and its experimental verification, IEEE Trans. Cybern., 51 (2020), 1121–1133. https://doi.org/10.1109/TCYB.2020.2987811 doi: 10.1109/TCYB.2020.2987811
![]() |
[8] |
Y. Zhang, Z. Chen, X. Zhang, Q. Sun, M. Sun, A novel control scheme for quadrotor UAV based upon active disturbance rejection control, Aerosp. Sci. Technol., 79 (2018), 601–609. https://doi.org/10.1016/j.ast.2018.06.017 doi: 10.1016/j.ast.2018.06.017
![]() |
[9] | M. Labbadi, Y. Boukal, M. Cherkaoui, Control of the QUAV by a hybrid finite-time tracking technique, in Advanced Robust Nonlinear Control Approaches for Quadrotor Unmanned Aerial Vehicle, (2022), 81–101. https://doi.org/10.1007/978-3-030-81014-6_4 |
[10] |
N. Wang, Q. Deng, G. Xie, X. Pan, Hybrid finite-time trajectory tracking control of a quadrotor, ISA Trans., 90 (2019), 278–286. https://doi.org/10.1016/j.isatra.2018.12.042 doi: 10.1016/j.isatra.2018.12.042
![]() |
[11] | Q. Yao, H. Jahanshahi, Novel finite-time adaptive sliding mode tracking control for disturbed mechanical systems, in Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, (2022), 09544062221091530. https://doi.org/10.1177/09544062221091530 |
[12] |
Q. Xu, Z. Wang, Z. Zhen, Adaptive neural network finite time control for quadrotor UAV with unknown input saturation, Nonlinear Dyn., 98 (2019), 1973–1998. https://doi.org/10.1007/s11071-019-05301-1 doi: 10.1007/s11071-019-05301-1
![]() |
[13] | H. Chen, H. Chen, P. Xu, Global fast terminal sliding mode control law design of a quadrotor, in 2019 international conference on computer, network, communication and information systems (CNCI 2019), Atlantis Press, (2019). |
[14] |
H. Hassani, A. Mansouri, A. Ahaitouf, Robust autonomous flight for quadrotor UAV based on adaptive nonsingular fast terminal sliding mode control, Int. J. Dyn. Control, 9 (2021), 619–635. https://doi.org/10.1007/s40435-020-00666-3 doi: 10.1007/s40435-020-00666-3
![]() |
[15] |
M. Labbadi, M. Cherkaoui, Robust adaptive backstepping fast terminal sliding mode controller for uncertain quadrotor UAV, Aerosp. Sci. Technol., 93 (2019), 105306. https://doi.org/10.1016/j.ast.2019.105306 doi: 10.1016/j.ast.2019.105306
![]() |
[16] |
I. Eker, Second-order sliding mode control with experimental application, ISA Trans., 49 (2010), 394–405. https://doi.org/10.1016/j.isatra.2010.03.010 doi: 10.1016/j.isatra.2010.03.010
![]() |
[17] |
I. Al-Darraji, D. Piromalis, A. A. Kakei, F. Q. Khan, M. Stojmenovic, G. Tsaramirsis, Adaptive robust controller design-based RBF neural network for aerial robot arm model, Electronics, 10 (2021), 831. https://doi.org/10.3390/electronics10070831 doi: 10.3390/electronics10070831
![]() |
[18] |
T. N. Truong, A. T. Vo, H. J. Kang, A backstepping global fast terminal sliding mode control for trajectory tracking control of industrial robotic manipulators, IEEE Access, 9 (2021), 31921–31931. https://doi.org/10.1109/ACCESS.2021.3060115 doi: 10.1109/ACCESS.2021.3060115
![]() |
[19] |
J. J. Xiong, G. B. Zhang, Global fast dynamic terminal sliding mode control for a quadrotor UAV, ISA Trans., 66 (2017), 233–240. https://doi.org/10.1016/j.isatra.2016.09.019 doi: 10.1016/j.isatra.2016.09.019
![]() |
1. | Lingeshwaran Shangerganesh, Govindharaju Sathishkumar, Shanmugasundaram Karthikeyan, Lower bounds for the finite-time blow-up of solutions of a cancer invasion model, 2019, 14173875, 1, 10.14232/ejqtde.2019.1.12 | |
2. | L. Shangerganesh, N. Nyamoradi, V.N. Deiva Mani, S. Karthikeyan, On the existence of weak solutions of nonlinear degenerate parabolic system with variable exponents, 2018, 75, 08981221, 322, 10.1016/j.camwa.2017.09.019 | |
3. | Tracy L. Stepien, Erica M. Rutter, Yang Kuang, Traveling Waves of a Go-or-Grow Model of Glioma Growth, 2018, 78, 0036-1399, 1778, 10.1137/17M1146257 | |
4. | Erica M. Rutter, Tracy L. Stepien, Barrett J. Anderies, Jonathan D. Plasencia, Eric C. Woolf, Adrienne C. Scheck, Gregory H. Turner, Qingwei Liu, David Frakes, Vikram Kodibagkar, Yang Kuang, Mark C. Preul, Eric J. Kostelich, Mathematical Analysis of Glioma Growth in a Murine Model, 2017, 7, 2045-2322, 10.1038/s41598-017-02462-0 | |
5. | Mohamed M. El-Dessoky, Ebraheem O. Alzahrani, Asim M. Asiri, Meng Fan, Zijuan Wen, Yang Kuang, Global existence and uniqueness of classical solutions for a generalized quasilinear parabolic equation with application to a glioblastoma growth model, 2016, 13, 1551-0018, 3, 10.3934/mbe.2017025 | |
6. | Ramray Bhat, Tilmann Glimm, Marta Linde-Medina, Cheng Cui, Stuart A. Newman, Synchronization of Hes1 oscillations coordinates and refines condensation formation and patterning of the avian limb skeleton, 2019, 156, 09254773, 41, 10.1016/j.mod.2019.03.001 | |
7. | John T. Nardini, D. M. Bortz, Investigation of a Structured Fisher's Equation with Applications in Biochemistry, 2018, 78, 0036-1399, 1712, 10.1137/16M1108546 | |
8. | John H. Lagergren, John T. Nardini, G. Michael Lavigne, Erica M. Rutter, Kevin B. Flores, Learning partial differential equations for biological transport models from noisy spatio-temporal data, 2020, 476, 1364-5021, 20190800, 10.1098/rspa.2019.0800 | |
9. | E. M. Rutter, H. T. Banks, K. B. Flores, Estimating intratumoral heterogeneity from spatiotemporal data, 2018, 77, 0303-6812, 1999, 10.1007/s00285-018-1238-6 | |
10. | Jeyaraj Manimaran, Lingeshwaran Shangerganesh, Solvability and numerical simulations for tumor invasion model with nonlinear diffusion, 2020, 2, 2577-7408, 10.1002/cmm4.1068 | |
11. | Changhan He, Samat Bayakhmetov, Duane Harris, Yang Kuang, Xiao Wang, A Predictive Reaction-Diffusion Based Model of E.coliColony Growth Control, 2021, 5, 2475-1456, 1952, 10.1109/LCSYS.2020.3046612 | |
12. | Sashikumaar Ganesan, Shangerganesh Lingeshwaran, A biophysical model of tumor invasion, 2017, 46, 10075704, 135, 10.1016/j.cnsns.2016.10.013 | |
13. | Victor Lopez de Rioja, Neus Isern, Joaquim Fort, A mathematical approach to virus therapy of glioblastomas, 2016, 11, 1745-6150, 10.1186/s13062-015-0100-7 | |
14. | Aisha Tursynkozha, Ardak Kashkynbayev, Bibinur Shupeyeva, Erica M. Rutter, Yang Kuang, Traveling wave speed and profile of a “go or grow” glioblastoma multiforme model, 2023, 118, 10075704, 107008, 10.1016/j.cnsns.2022.107008 | |
15. | Changhan He, Samat Bayakhmetov, Duane Harris, Yang Kuang, Xiao Wang, 2021, A Predictive Reaction-diffusion Based Model of E. coli Colony Growth Control, 978-1-6654-4197-1, 1891, 10.23919/ACC50511.2021.9482641 | |
16. | Chuying Ding, Zizi Wang, Qian Zhang, Age-structure model for oncolytic virotherapy, 2022, 15, 1793-5245, 10.1142/S1793524521500911 | |
17. | Zizi Wang, Qian Zhang, Yong Luo, A general non-local delay model on oncolytic virus therapy, 2022, 102, 0307904X, 423, 10.1016/j.apm.2021.09.045 | |
18. | Kyle Nguyen, Erica M. Rutter, Kevin B. Flores, Estimation of Parameter Distributions for Reaction-Diffusion Equations with Competition using Aggregate Spatiotemporal Data, 2023, 85, 0092-8240, 10.1007/s11538-023-01162-3 | |
19. | Mykola Yaremenko, Aspects of Solvability Theory for Quasilinear Parabolic Systems in Specific Form with the Singular Coefficients, 2023, 3, 2732-9941, 8, 10.37394/232020.2023.3.2 | |
20. | V.S. Aswin, J. Manimaran, Nagaiah Chamakuri, Space-time adaptivity for a multi-scale cancer invasion model, 2023, 146, 08981221, 309, 10.1016/j.camwa.2023.07.005 | |
21. | Adam A. Malik, Kyle C. Nguyen, John T. Nardini, Cecilia C. Krona, Kevin B. Flores, Sven Nelander, Mathematical modeling of multicellular tumor spheroids quantifies inter-patient and intra-tumor heterogeneity, 2025, 11, 2056-7189, 10.1038/s41540-025-00492-3 |