Stability, delay, and chaotic behavior in a Lotka-Volterra predator-prey system

  • Received: 01 February 2005 Accepted: 29 June 2018 Published: 01 November 2005
  • MSC : 34D35.

  • We consider the following Lotka-Volterra predator-prey system with two delays:

    (E)
    We show that a positive equilibrium of system (E) is globally asymptotically stable for small delays. Critical values of time delay through which system (E) undergoes a Hopf bifurcation are analytically determined. Some numerical simulations suggest an existence of subcritical Hopf bifurcation near the critical values of time delay. Further system (E) exhibits some chaotic behavior when becomes large.

    Citation: S. Nakaoka, Y. Saito, Y. Takeuchi. Stability, delay, and chaotic behavior in a Lotka-Volterra predator-prey system[J]. Mathematical Biosciences and Engineering, 2006, 3(1): 173-187. doi: 10.3934/mbe.2006.3.173

    Related Papers:

    [1] Shunyi Li . Hopf bifurcation, stability switches and chaos in a prey-predator system with three stage structure and two time delays. Mathematical Biosciences and Engineering, 2019, 16(6): 6934-6961. doi: 10.3934/mbe.2019348
    [2] Dirk Stiefs, Ezio Venturino, Ulrike Feudel . Evidence of chaos in eco-epidemic models. Mathematical Biosciences and Engineering, 2009, 6(4): 855-871. doi: 10.3934/mbe.2009.6.855
    [3] Shuangte Wang, Hengguo Yu . Stability and bifurcation analysis of the Bazykin's predator-prey ecosystem with Holling type Ⅱ functional response. Mathematical Biosciences and Engineering, 2021, 18(6): 7877-7918. doi: 10.3934/mbe.2021391
    [4] Fang Liu, Yanfei Du . Spatiotemporal dynamics of a diffusive predator-prey model with delay and Allee effect in predator. Mathematical Biosciences and Engineering, 2023, 20(11): 19372-19400. doi: 10.3934/mbe.2023857
    [5] Chunmei Zhang, Suli Liu, Jianhua Huang, Weiming Wang . Stability and Hopf bifurcation in an eco-epidemiological system with the cost of anti-predator behaviors. Mathematical Biosciences and Engineering, 2023, 20(5): 8146-8161. doi: 10.3934/mbe.2023354
    [6] Saheb Pal, Nikhil Pal, Sudip Samanta, Joydev Chattopadhyay . Fear effect in prey and hunting cooperation among predators in a Leslie-Gower model. Mathematical Biosciences and Engineering, 2019, 16(5): 5146-5179. doi: 10.3934/mbe.2019258
    [7] Yuanfu Shao . Bifurcations of a delayed predator-prey system with fear, refuge for prey and additional food for predator. Mathematical Biosciences and Engineering, 2023, 20(4): 7429-7452. doi: 10.3934/mbe.2023322
    [8] Feng Rao, Carlos Castillo-Chavez, Yun Kang . Dynamics of a stochastic delayed Harrison-type predation model: Effects of delay and stochastic components. Mathematical Biosciences and Engineering, 2018, 15(6): 1401-1423. doi: 10.3934/mbe.2018064
    [9] Manoj K. Singh, Brajesh K. Singh, Poonam, Carlo Cattani . Under nonlinear prey-harvesting, effect of strong Allee effect on the dynamics of a modified Leslie-Gower predator-prey model. Mathematical Biosciences and Engineering, 2023, 20(6): 9625-9644. doi: 10.3934/mbe.2023422
    [10] A. Q. Khan, I. Ahmad, H. S. Alayachi, M. S. M. Noorani, A. Khaliq . Discrete-time predator-prey model with flip bifurcation and chaos control. Mathematical Biosciences and Engineering, 2020, 17(5): 5944-5960. doi: 10.3934/mbe.2020317
  • We consider the following Lotka-Volterra predator-prey system with two delays:

    (E)
    We show that a positive equilibrium of system (E) is globally asymptotically stable for small delays. Critical values of time delay through which system (E) undergoes a Hopf bifurcation are analytically determined. Some numerical simulations suggest an existence of subcritical Hopf bifurcation near the critical values of time delay. Further system (E) exhibits some chaotic behavior when becomes large.


  • This article has been cited by:

    1. Sudeshna Mondal, G.P. Samanta, Dynamics of an additional food provided predator–prey system with prey refuge dependent on both species and constant harvest in predator, 2019, 534, 03784371, 122301, 10.1016/j.physa.2019.122301
    2. 2010, Global Hopf bifurcation in a delayed predator-prey system, 978-1-4244-8104-0, V2-469, 10.1109/ICINA.2010.5636467
    3. Santosh Biswas, Sudip Samanta, Joydev Chattopadhyay, Cannibalistic Predator–Prey Model with Disease in Predator — A Delay Model, 2015, 25, 0218-1274, 1550130, 10.1142/S0218127415501308
    4. Yueping Dong, Yasuhiro Takeuchi, Shinji Nakaoka, A mathematical model of multiple delayed feedback control system of the gut microbiota—Antibiotics injection controlled by measured metagenomic data, 2018, 43, 14681218, 1, 10.1016/j.nonrwa.2018.02.005
    5. S. Ruan, On Nonlinear Dynamics of Predator-Prey Models with Discrete Delay, 2009, 4, 0973-5348, 140, 10.1051/mmnp/20094207
    6. Balram Dubey, Ankit Kumar, Atasi Patra Maiti, Global stability and Hopf-bifurcation of prey-predator system with two discrete delays including habitat complexity and prey refuge, 2019, 67, 10075704, 528, 10.1016/j.cnsns.2018.07.019
    7. Kunal Chakraborty, Soovoojeet Jana, T. K. Kar, Effort dynamics of a delay-induced prey–predator system with reserve, 2012, 70, 0924-090X, 1805, 10.1007/s11071-012-0575-z
    8. Balram Dubey, Ankit Kumar, Dynamics of prey–predator model with stage structure in prey including maturation and gestation delays, 2019, 96, 0924-090X, 2653, 10.1007/s11071-019-04951-5
    9. Yaming Zhang, Fei Liu, Yaya H. Koura, Yanyuan Su, Stefano Valvano, Dynamics of a Delayed Interactive Model Applied to Information Dissemination in Social Networks, 2021, 2021, 1563-5147, 1, 10.1155/2021/6611168
    10. Jean M. Tchuenche, Alexander Nwagwo, Richard Levins, Global behaviour of an SIR epidemic model with time delay, 2007, 30, 01704214, 733, 10.1002/mma.810
    11. Nikhil Pal, Sudip Samanta, Santanu Biswas, Marwan Alquran, Kamel Al-Khaled, Joydev Chattopadhyay, Stability and Bifurcation Analysis of a Three-Species Food Chain Model with Delay, 2015, 25, 0218-1274, 1550123, 10.1142/S0218127415501230
    12. Zi-Gen Song, Jian Xu, Stability switches and double Hopf bifurcation in a two-neural network system with multiple delays, 2013, 7, 1871-4080, 505, 10.1007/s11571-013-9254-0
    13. Zhichao Jiang, Hongtao Wang, Hongmei Wang, Global Periodic Solutions in a Delayed Predator-Prey System with Holling II Functional Response, 2010, 50, 1225-6951, 255, 10.5666/KMJ.2010.50.2.255
    14. X. Wang, W. Wang, G. Zhang, Global Analysis of Predator-Prey System with Hawk and Dove Tactics, 2010, 124, 00222526, 151, 10.1111/j.1467-9590.2009.00466.x
    15. Debaldev Jana, R. Gopal, M. Lakshmanan, Complex dynamics generated by negative and positive feedback delays of a prey–predator system with prey refuge: Hopf bifurcation to Chaos, 2017, 5, 2195-268X, 1020, 10.1007/s40435-016-0267-5
    16. Zi-Gen Song, Bin Zhen, Jian Xu, Species coexistence and chaotic behavior induced by multiple delays in a food chain system, 2014, 19, 1476945X, 9, 10.1016/j.ecocom.2014.01.004
    17. Yueping Dong, Moitri Sen, Malay Banerjee, Yasuhiro Takeuchi, Shinji Nakaoka, Delayed feedback induced complex dynamics in an Escherichia coli and Tetrahymena system, 2018, 94, 0924-090X, 1447, 10.1007/s11071-018-4434-4
    18. Balram Dubey, Ankit Kumar, Stability switching and chaos in a multiple delayed prey-predator model with fear effect and anti-predator behavior, 2021, 03784754, 10.1016/j.matcom.2021.03.037
    19. Andrei D. Polyanin, Alexei I. Zhurov, Multi-Parameter Reaction–Diffusion Systems with Quadratic Nonlinearity and Delays: New Exact Solutions in Elementary Functions, 2022, 10, 2227-7390, 1529, 10.3390/math10091529
    20. Ruimin Zhang, Xiaohui Liu, Chunjin Wei, Dynamic analysis of stochastic delay mutualistic system of leaf-cutter ants with stage structure and their fungus garden, 2022, 16, 1751-3758, 565, 10.1080/17513758.2022.2099590
    21. Yuki Hata, Hideaki Matsunaga, Delay-dependent stability switches in a delay differential system, 2023, 0, 1531-3492, 0, 10.3934/dcdsb.2023047
    22. Julián López-Gómez, Eduardo Muñoz-Hernández, Fabio Zanolin, Subharmonic solutions for a class of predator-prey models with degenerate weights in periodic environments, 2023, 21, 2391-5455, 10.1515/math-2022-0593
    23. Jyotirmoy Roy, Subrata Dey, Malay Banerjee, Maturation delay induced stability enhancement and shift of bifurcation thresholds in a predator–prey model with generalist predator, 2023, 211, 03784754, 368, 10.1016/j.matcom.2023.04.019
    24. Archana Ojha, Nilesh Kumar Thakur, Complex dynamics induced by multiple gestation delays in a Leslie–Gower‐type system with competitive interference, 2023, 0170-4214, 10.1002/mma.9528
    25. Sheenu Nayyar, Kulbhushan Agnihotri, 2023, Chapter 5, 978-981-19-8053-4, 107, 10.1007/978-981-19-8054-1_5
    26. Bashir Al-Hdaibat, Mahmoud H. DarAssi, Irfan Ahmad, Muhammad Altaf Khan, Reem Algethamie, Ebraheem Alzahrani, Numerical investigation of an SIR fractional order delay epidemic model in the framework of Mittag–Leffler kernel, 2025, 0924-090X, 10.1007/s11071-025-11006-5
    27. Yoichi Enatsu, Jyotirmoy Roy, Malay Banerjee, Hunting cooperation in a prey–predator model with maturation delay, 2024, 18, 1751-3758, 10.1080/17513758.2024.2332279
  • Reader Comments
  • © 2006 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3094) PDF downloads(552) Cited by(26)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog