Internal eradicability for an epidemiological model with diffusion

  • Received: 01 January 2005 Accepted: 29 June 2018 Published: 01 August 2005
  • MSC : 92D30.

  • This work is concerned with the analysis of the possibility for eradicating a disease in an infected population. The epidemiological model under study is of SI type with diffusion. We assume the policy strategy acting on the infected individuals over a subset of the whole spatial territory. Using the framework of nonlinear reaction-diffusion equations, and spectral theory of linear differential operators, we give necessary conditions and sufficient conditions of eradicability.

    Citation: Sebastian Aniţa, Bedreddine Ainseba. Internal eradicability for an epidemiological model with diffusion[J]. Mathematical Biosciences and Engineering, 2005, 2(3): 437-443. doi: 10.3934/mbe.2005.2.437

    Related Papers:

    [1] Liqiong Pu, Zhigui Lin . A diffusive SIS epidemic model in a heterogeneous and periodically evolvingenvironment. Mathematical Biosciences and Engineering, 2019, 16(4): 3094-3110. doi: 10.3934/mbe.2019153
    [2] Yan’e Wang , Zhiguo Wang, Chengxia Lei . Asymptotic profile of endemic equilibrium to a diffusive epidemic model with saturated incidence rate. Mathematical Biosciences and Engineering, 2019, 16(5): 3885-3913. doi: 10.3934/mbe.2019192
    [3] Wenzhang Huang, Maoan Han, Kaiyu Liu . Dynamics of an SIS reaction-diffusion epidemic model for disease transmission. Mathematical Biosciences and Engineering, 2010, 7(1): 51-66. doi: 10.3934/mbe.2010.7.51
    [4] Xin-You Meng, Tao Zhang . The impact of media on the spatiotemporal pattern dynamics of a reaction-diffusion epidemic model. Mathematical Biosciences and Engineering, 2020, 17(4): 4034-4047. doi: 10.3934/mbe.2020223
    [5] Lin Zhao, Haifeng Huo . Spatial propagation for a reaction-diffusion SI epidemic model with vertical transmission. Mathematical Biosciences and Engineering, 2021, 18(5): 6012-6033. doi: 10.3934/mbe.2021301
    [6] Danfeng Pang, Yanni Xiao . The SIS model with diffusion of virus in the environment. Mathematical Biosciences and Engineering, 2019, 16(4): 2852-2874. doi: 10.3934/mbe.2019141
    [7] Raimund Bürger, Gerardo Chowell, Elvis Gavilán, Pep Mulet, Luis M. Villada . Numerical solution of a spatio-temporal predator-prey model with infected prey. Mathematical Biosciences and Engineering, 2019, 16(1): 438-473. doi: 10.3934/mbe.2019021
    [8] Jinzhe Suo, Bo Li . Analysis on a diffusive SIS epidemic system with linear source and frequency-dependent incidence function in a heterogeneous environment. Mathematical Biosciences and Engineering, 2020, 17(1): 418-441. doi: 10.3934/mbe.2020023
    [9] Yongli Cai, Yun Kang, Weiming Wang . Global stability of the steady states of an epidemic model incorporating intervention strategies. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1071-1089. doi: 10.3934/mbe.2017056
    [10] Muntaser Safan, Klaus Dietz . On the eradicability of infections with partially protective vaccination in models with backward bifurcation. Mathematical Biosciences and Engineering, 2009, 6(2): 395-407. doi: 10.3934/mbe.2009.6.395
  • This work is concerned with the analysis of the possibility for eradicating a disease in an infected population. The epidemiological model under study is of SI type with diffusion. We assume the policy strategy acting on the infected individuals over a subset of the whole spatial territory. Using the framework of nonlinear reaction-diffusion equations, and spectral theory of linear differential operators, we give necessary conditions and sufficient conditions of eradicability.


  • This article has been cited by:

    1. Laura-Iulia Aniţa, Sebastian Aniţa, Internal eradicability of a diffusive epidemic system via feedback control, 2011, 12, 14681218, 2294, 10.1016/j.nonrwa.2011.01.010
    2. Viorel Arnăutu, Ana-Maria Moşneagu, Numerical Applications for Insulin Treatment Models, 2011, 57, 1221-8421, 10.2478/v10157-010-0036-2
    3. Gabriela Marinoschi, A model of an epidemic mapping, 2018, 67, 0035-5038, 271, 10.1007/s11587-018-0367-y
  • Reader Comments
  • © 2005 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2501) PDF downloads(438) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog