Letter Special Issues

A neural operator using dynamic mode decomposition analysis to approximate partial differential equations

  • Published: 28 September 2025
  • MSC : 68T07, 35A99

  • Solving partial differential equations (PDEs) for various initial and boundary conditions requires significant computational resources. We propose a neural operator $ G_\theta: \mathcal{A} \to \mathcal{U} $, mapping functional spaces, which combines dynamic mode decomposition (DMD) and deep learning for efficient modeling of spatiotemporal processes. The method automatically extracts key modes and system dynamics and uses them to construct predictions, reducing computational costs compared to traditional methods (FEM, FDM, FVM). The approach is demonstrated and compared with closest methods (DeepONet, FNO) on the heat equation and Laplace equation, where high accuracy of solution recovery is achieved.

    Citation: Nikita Sakovich, Dmitry Aksenov, Ekaterina Pleshakova, Sergey Gataullin. A neural operator using dynamic mode decomposition analysis to approximate partial differential equations[J]. AIMS Mathematics, 2025, 10(9): 22432-22444. doi: 10.3934/math.2025999

    Related Papers:

  • Solving partial differential equations (PDEs) for various initial and boundary conditions requires significant computational resources. We propose a neural operator $ G_\theta: \mathcal{A} \to \mathcal{U} $, mapping functional spaces, which combines dynamic mode decomposition (DMD) and deep learning for efficient modeling of spatiotemporal processes. The method automatically extracts key modes and system dynamics and uses them to construct predictions, reducing computational costs compared to traditional methods (FEM, FDM, FVM). The approach is demonstrated and compared with closest methods (DeepONet, FNO) on the heat equation and Laplace equation, where high accuracy of solution recovery is achieved.



    加载中


    [1] S. Aslan, A. O. Akdemir, New estimations for quasi-convex functions and (h, m)-convex functions with the help of Caputo-Fabrizio fractional integral operators, Electron. J. Appl. Math., 1 (2023), 1–9. https://doi.org/10.61383/ejam.20231353 doi: 10.61383/ejam.20231353
    [2] A. Borhanifar, M. A. Ragusa, S. Valizadeh, High-order numerical method for twodimensional Riesz space fractional advection-dispersion equation, Discrete Contin. Dyn. Syst.-Ser. B, 26 (2021), 5495–5508. https://doi.org/10.3934/dcdsb.2020355 doi: 10.3934/dcdsb.2020355
    [3] D. D. Ma, F. Wu, Fractional Navier-Stokes equations regularity criteria in terms of deformation tensor, Filomat, 39 (2025), 239–247. https://doi.org/10.2298/FIL2501239M doi: 10.2298/FIL2501239M
    [4] M. Raissi, P. Perdikaris, G. E. Karniadakis, Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys., 378 (2019), 686–707. https://doi.org/10.1016/j.jcp.2018.10.045 doi: 10.1016/j.jcp.2018.10.045
    [5] Z. Y. Zhang, J. Y. Li, L. L. Guo, Invariant deep neural networks under the finite group for solving partial differential equations, J. Comput. Phys., 523 (2025), 113680. https://doi.org/10.1016/j.jcp.2024.113680 doi: 10.1016/j.jcp.2024.113680
    [6] Z. Y. Zhang, S. J. Cai, H. Zhang, A symmetry group based supervised learning method for solving partial differential equations, Comput. Methods Appl. Mech. Eng., 414 (2023), 116181. https://doi.org/10.1016/j.cma.2023.116181 doi: 10.1016/j.cma.2023.116181
    [7] L. Lu, P. Z. Jin, G. F. Pang, Z. Q. Zhang, G. E. Karniadakis, Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators, Nat. Mach. Intell., 3 (2021), 218–229. https://doi.org/10.1038/s42256-021-00302-5 doi: 10.1038/s42256-021-00302-5
    [8] P. Z. Jin, S. Meng, L. Lu, MIONet: learning multiple-input operators via tensor product, SIAM J. Sci. Comput., 44 (2022), A3490–A3514. https://doi.org/10.1137/22M1477751 doi: 10.1137/22M1477751
    [9] Z. Y. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, et al., Fourier neural operator for parametric partial differential equations, arXiv Preprint, 2020. https://doi.org/10.48550/arXiv.2010.08895
    [10] Z. Y. Li, D. Z. Huang, B. Liu, A. Anandkumar, Fourier neural operator with learned deformations for pdes on general geometries, J. Mach. Learn. Res., 24 (2023), 1–26.
    [11] J. H. Tu, Dynamic mode decomposition: theory and applications, Princeton University, 2013.
    [12] J. L. Proctor, S. L. Brunton, J. N. Kutz, Dynamic mode decomposition with control, SIAM J. Appl. Dyn. Syst., 15 (2016), 142–161. https://doi.org/10.1137/15M1013857 doi: 10.1137/15M1013857
    [13] P. J. Schmid, Dynamic mode decomposition and its variants, Ann. Rev. Fluid Mech., 54 (2022), 225–254. https://doi.org/10.1146/annurev-fluid-030121-015835 doi: 10.1146/annurev-fluid-030121-015835
    [14] C. Eckart, G. Young, The approximation of one matrix by another of lower rank, Psychometrika, 1 (1936), 211–218.
    [15] N. D. Sakovich, D. A. Aksenov, E. S. Pleshakova, S. T. Gataullin, A neural operator based on dynamic mode decomposition analysis for approximation of partial differential equations (In Russian), Certificate of State Registration of Computer Program No. 2025663626, Moscow, Russia: Rospatent Federal Service on Intellectual Property, 2025.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1129) PDF downloads(38) Cited by(1)

Article outline

Figures and Tables

Figures(3)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog