With the help of the reference probability measure concept in filtering theory, we proved the existence and uniqueness of the $ {\cal Q}^0 $-weak solution to a linear conditional mean-field fractional SDE with Hurst parameter $ H\in (\frac{1}{2}, 1) $, which will be a foundation of investigating equilibrium of insider trading driven by fractional Brownian motion.
Citation: Kai Xiao, Yonghui Zhou. On the existence and uniqueness of $ {\cal Q}^0 $-weak solution to linear conditional mean-field fractional SDE[J]. AIMS Mathematics, 2025, 10(9): 22421-22431. doi: 10.3934/math.2025998
With the help of the reference probability measure concept in filtering theory, we proved the existence and uniqueness of the $ {\cal Q}^0 $-weak solution to a linear conditional mean-field fractional SDE with Hurst parameter $ H\in (\frac{1}{2}, 1) $, which will be a foundation of investigating equilibrium of insider trading driven by fractional Brownian motion.
| [1] |
K. Aase, T. Bjuland, B. Øksendal, Strategic insider trading equilibrium: A filter theory approach, Afr. Mat., 23 (2012), 145–162. http://dx.doi.org/10.1007/s13370-011-0026-x doi: 10.1007/s13370-011-0026-x
|
| [2] | R. Liptser, A. Shiryaev, Statistic of random process: Ⅰ. General theory, Springer, 2001. http://dx.doi.org/10.1007/978-3-662-13043-8 |
| [3] | R. Liptser, A. Shiryaev, Statistic of random process: Ⅱ. Applications, Springer, 2001. http://dx.doi.org/10.1007/978-3-662-10028-8 |
| [4] |
J. Ma, R. Sun, Y. Zhou, Kyle-Back equilibrium models and linear conditional mean-field SDEs, SIAM Control Optim., 56 (2018), 1154–1180. http://dx.doi.org/10.1137/15M102558X doi: 10.1137/15M102558X
|
| [5] |
O. Zeitouni, On the reference probability approach to the equations of nonlinear filtering, Stochastics, 19 (1986), 133–149. http://dx.doi.org/10.1080/17442508608833421 doi: 10.1080/17442508608833421
|
| [6] |
X. Wang, Y. Guo, J. Li, H. Liu, Two gesture-computing approaches by using electromagnetic waves, Inverse Probl. Imag., 13 (2019), 879–901. http://dx.doi.org/10.48550/arXiv.1705.07713 doi: 10.48550/arXiv.1705.07713
|
| [7] |
Z. Yuan, P. Meng, W. Yin, L. Zhou, Turbulence mitigation in optical imaging using pyramid attention GAN, Opt. Laser Technol., 188 (2025), 112880. http://dx.doi.org/10.1016/j.optlastec.2025.112880 doi: 10.1016/j.optlastec.2025.112880
|
| [8] |
J. Zhuang, P. Meng, W. Yin, A stable neural network for inverse scattering problems with contaminated data, Knowl.-Based Syst., 310 (2025), 113001. http://dx.doi.org/10.1016/j.knosys.2025.113001 doi: 10.1016/j.knosys.2025.113001
|
| [9] |
B. Yang, X. He, N. Huang, Equilibrium price and optimal insider trading strategy under stochastic liquidity with long memory, Appl. Math. Opt., 84 (2021), 1209–1237. http://dx.doi.org/10.1007/s00245-020-09675-2 doi: 10.1007/s00245-020-09675-2
|
| [10] | K. Xiao, Y. Zhou, Insider trading with memory under random deadline, J. Math., 2021. http://dx.doi.org/10.1155/2021/2973361 |
| [11] |
F. Biagini, Y. Hu, T. Myer-Brandis, B. Øksendal, Insider trading equilibrium in a market with memory, Math. Financ. Econ., 6 (2012), 229–247. http://dx.doi.org/10.1007/s11579-012-0065-6 doi: 10.1007/s11579-012-0065-6
|
| [12] |
M. Kleptsyna, A. Le Breton, M. Roubaud, General approach to filtering with fractional Brownian noises—application to linear systems, Stochastics, 71 (2000), 119–140. http://dx.doi.org/10.1080/17442500008834261 doi: 10.1080/17442500008834261
|
| [13] | L. Tan, S. Wang, Wellposedness and averaging principle for conditional distribution dependent SDEs driven by standard Brownian motions and fractional Brownian motions, arXiv preprint, 2025. https://doi.org/10.48550/arXiv.2504.21268 |
| [14] | L. Di Persio, M. Alruqimi, M. Garbelli, Stochastic approaches to energy markets: From stochastic differential equations to mean field games and neural network modeling, Energies, 17 (2024). http://dx.doi.org/10.3390/en17236106 |
| [15] | P. Protter, Stochastic integration and differential equations—a new approach, Springer-Verlag, Berlin, Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-662-02619-9-6 |
| [16] | I. Norros, E. Valkeila, J. Virtamo, An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions, Bernouli, 5 (1999), 571–587. http://dx.doi.org/10.2307/3318691 |
| [17] |
M. Kleptsyna, A. Le Breton, M. Roubaud, Parameter estimation and optimal filtering for fractional type stochastic systems, Stat. Infer. Stoch. Pro., 3 (2000), 173–182. http://dx.doi.org/10.1023/A:1009923431187 doi: 10.1023/A:1009923431187
|
| [18] | A. Benssussan, Stochastic control of partially observable systems, Cambridge University Press, 1992. http://dx.doi.org/10.1017/CBO9780511526503 |
| [19] |
L. Decreusefond, A. Üstünel, Stochastic analysis of the fractional Brownian motion, Potential Anal., 10 (1999), 177–214. http://dx.doi.org/10.1023/A:1008634027843 doi: 10.1023/A:1008634027843
|