Research article

Generalized Weierstrass-Enneper representation for minimal surfaces in $ \mathbb{R}^4 $

  • Published: 28 September 2025
  • MSC : 53A10, 53C42

  • In this study, we present a generalized Weierstrass-Enneper representation for minimal surfaces in four-dimensional Euclidean space. We derive both parametric (explicit) and algebraic (implicit) representations of several example minimal surfaces, examine their differential-geometric properties, and visualize them through orthogonal projections from $ \mathbb{R}^4 $ into $ \mathbb{R}^3 $.

    Citation: Magdalena Toda, Erhan Güler. Generalized Weierstrass-Enneper representation for minimal surfaces in $ \mathbb{R}^4 $[J]. AIMS Mathematics, 2025, 10(9): 22406-22420. doi: 10.3934/math.2025997

    Related Papers:

  • In this study, we present a generalized Weierstrass-Enneper representation for minimal surfaces in four-dimensional Euclidean space. We derive both parametric (explicit) and algebraic (implicit) representations of several example minimal surfaces, examine their differential-geometric properties, and visualize them through orthogonal projections from $ \mathbb{R}^4 $ into $ \mathbb{R}^3 $.



    加载中


    [1] J. C. C. Nitsche, Lectures on minimal surfaces, volume 1: introduction, fundamentals, geometry and basic boundary value problems, Cambridge: Cambridge University Press, 1989.
    [2] R. Osserman, A survey of minimal surfaces, Mineola: Dover Publications, 1986.
    [3] F. Burstall, D. Ferus, K. Leschke, F. Pedit, U. Pinkall, Conformal geometry of surfaces in $S^4$ and quaternions, Berlin: Springer, 2002. https://doi.org/10.1007/b82935
    [4] T. Friedrich, On the spinor representation of surfaces in Euclidean 3-space, J. Geom. Phys., 28 (1998), 143–157. https://doi.org/10.1016/S0393-0440(98)00018-7 doi: 10.1016/S0393-0440(98)00018-7
    [5] D. Hoffman, R. Osserman, The geometry of the generalized Gauss map, Providence: American Mathematical Society, 1980.
    [6] M. De Oliveira, Some new examples of nonorientable minimal surfaces, Proc. Amer. Math. Soc., 98 (1986), 629–636. https://doi.org/10.1090/S0002-9939-1986-0861765-0 doi: 10.1090/S0002-9939-1986-0861765-0
    [7] L. P. Jorge, W. H. Meeks, The topology of complete minimal surfaces of finite Gaussian curvature, Topology, 22 (1983), 203–221. https://doi.org/10.1016/0040-9383(83)90032-0 doi: 10.1016/0040-9383(83)90032-0
    [8] E. Güler, Y. Yaylı, M. Toda, Differential geometry and matrix-based generalizations of the Pythagorean theorem in space forms, Mathematics, 13 (2025), 836. https://doi.org/10.3390/math13050836 doi: 10.3390/math13050836
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(646) PDF downloads(42) Cited by(0)

Article outline

Figures and Tables

Figures(14)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog