In this study, we present a generalized Weierstrass-Enneper representation for minimal surfaces in four-dimensional Euclidean space. We derive both parametric (explicit) and algebraic (implicit) representations of several example minimal surfaces, examine their differential-geometric properties, and visualize them through orthogonal projections from $ \mathbb{R}^4 $ into $ \mathbb{R}^3 $.
Citation: Magdalena Toda, Erhan Güler. Generalized Weierstrass-Enneper representation for minimal surfaces in $ \mathbb{R}^4 $[J]. AIMS Mathematics, 2025, 10(9): 22406-22420. doi: 10.3934/math.2025997
In this study, we present a generalized Weierstrass-Enneper representation for minimal surfaces in four-dimensional Euclidean space. We derive both parametric (explicit) and algebraic (implicit) representations of several example minimal surfaces, examine their differential-geometric properties, and visualize them through orthogonal projections from $ \mathbb{R}^4 $ into $ \mathbb{R}^3 $.
| [1] | J. C. C. Nitsche, Lectures on minimal surfaces, volume 1: introduction, fundamentals, geometry and basic boundary value problems, Cambridge: Cambridge University Press, 1989. |
| [2] | R. Osserman, A survey of minimal surfaces, Mineola: Dover Publications, 1986. |
| [3] | F. Burstall, D. Ferus, K. Leschke, F. Pedit, U. Pinkall, Conformal geometry of surfaces in $S^4$ and quaternions, Berlin: Springer, 2002. https://doi.org/10.1007/b82935 |
| [4] |
T. Friedrich, On the spinor representation of surfaces in Euclidean 3-space, J. Geom. Phys., 28 (1998), 143–157. https://doi.org/10.1016/S0393-0440(98)00018-7 doi: 10.1016/S0393-0440(98)00018-7
|
| [5] | D. Hoffman, R. Osserman, The geometry of the generalized Gauss map, Providence: American Mathematical Society, 1980. |
| [6] |
M. De Oliveira, Some new examples of nonorientable minimal surfaces, Proc. Amer. Math. Soc., 98 (1986), 629–636. https://doi.org/10.1090/S0002-9939-1986-0861765-0 doi: 10.1090/S0002-9939-1986-0861765-0
|
| [7] |
L. P. Jorge, W. H. Meeks, The topology of complete minimal surfaces of finite Gaussian curvature, Topology, 22 (1983), 203–221. https://doi.org/10.1016/0040-9383(83)90032-0 doi: 10.1016/0040-9383(83)90032-0
|
| [8] |
E. Güler, Y. Yaylı, M. Toda, Differential geometry and matrix-based generalizations of the Pythagorean theorem in space forms, Mathematics, 13 (2025), 836. https://doi.org/10.3390/math13050836 doi: 10.3390/math13050836
|