This work presents a generalization and a comparative study of the recursive maximum likelihood estimation algorithm for large-scale interconnected nonlinear systems, extending existing integer-order frameworks to fractional-order dynamics. While prior research introduced Mamdani fuzzy-based parameter estimators for networked integer-order interconnected nonlinear autoregressive moving average with exogenous input (INARMAX) models, this study addresses the challenges of time-varying fractional-order systems with memory-dependent behavior and stochastic disturbances. A novel recursive estimator is developed by integrating the Grünwald–Letnikov fractional difference operator into the prediction error framework, coupled with a Mamdani fuzzy supervisor to dynamically tune the forgetting factors. The proposed method is rigorously validated through simulations on interconnected subsystems with time-varying coefficients and nonlinear couplings. The results demonstrate a 30%–50% reduction in steady-state prediction errors and 40%–60% faster convergence compared with integer-order benchmarks, alongside superior robustness to noise ($\sigma_i^2 \leq 0.25$) and abrupt parameter changes. This work establishes the first fuzzy-augmented fractional Maximum Likelihood Estimation (MLE) framework for large-scale systems, offering theoretical guarantees and empirical validation. Applications in power networks, biomedical systems, and industrial processes with hereditary dynamics are highlighted. The study underscores the necessity of fractional-order modeling in complex systems and provides a scalable solution for real-world deployment.
Citation: Mourad Elloumi, Omar Naifar, Abdulaziz J Alateeq, Mansoor Alturki, Khalid Alqunun, Tawfik Guesmi. Mamdani fuzzy parameter estimation of fractional-order large-scale interconnected systems[J]. AIMS Mathematics, 2025, 10(9): 22382-22405. doi: 10.3934/math.2025996
This work presents a generalization and a comparative study of the recursive maximum likelihood estimation algorithm for large-scale interconnected nonlinear systems, extending existing integer-order frameworks to fractional-order dynamics. While prior research introduced Mamdani fuzzy-based parameter estimators for networked integer-order interconnected nonlinear autoregressive moving average with exogenous input (INARMAX) models, this study addresses the challenges of time-varying fractional-order systems with memory-dependent behavior and stochastic disturbances. A novel recursive estimator is developed by integrating the Grünwald–Letnikov fractional difference operator into the prediction error framework, coupled with a Mamdani fuzzy supervisor to dynamically tune the forgetting factors. The proposed method is rigorously validated through simulations on interconnected subsystems with time-varying coefficients and nonlinear couplings. The results demonstrate a 30%–50% reduction in steady-state prediction errors and 40%–60% faster convergence compared with integer-order benchmarks, alongside superior robustness to noise ($\sigma_i^2 \leq 0.25$) and abrupt parameter changes. This work establishes the first fuzzy-augmented fractional Maximum Likelihood Estimation (MLE) framework for large-scale systems, offering theoretical guarantees and empirical validation. Applications in power networks, biomedical systems, and industrial processes with hereditary dynamics are highlighted. The study underscores the necessity of fractional-order modeling in complex systems and provides a scalable solution for real-world deployment.
| [1] | I. Podlubny, Fractional differential equations, Academic Press, 1998. |
| [2] |
H. P. Wang, G. I. Mustafa, Y. Tian, Model-free fractional-order sliding mode control for an active vehicle suspension system, Adv. Eng. Software, 115 (2018), 452–461. https://doi.org/10.1016/j.advengsoft.2017.11.001 doi: 10.1016/j.advengsoft.2017.11.001
|
| [3] | R. L. Magin, Fractional calculus in bioengineering: a tool to model complex dynamics, Proceedings of the 13th International Carpathian Control Conference (ICCC), IEEE, 2012. https://doi.org/10.1109/CarpathianCC.2012.6228688 |
| [4] |
R. T. Baillie, Long memory processes and fractional integration in econometrics, J. Econometrics, 73 (1996), 5–59. https://doi.org/10.1016/0304-4076(95)01732-1 doi: 10.1016/0304-4076(95)01732-1
|
| [5] |
P. A. Naik, B. M. Yeolekar, S. Qureshi, N. Manhas, M. Ghoreishi, M. Yeolekar, et al., Global analysis of a fractional‐order hepatitis B virus model under immune response in the presence of cytokines, Adv. Theory Simul., 7 (2024), 2400726. https://doi.org/10.1002/adts.202400726 doi: 10.1002/adts.202400726
|
| [6] |
K. P. S. Rana, V. Kumar, N. Mittra, N. Pramanik, Implementation of fractional order integrator/differentiator on field programmable gate array, Alex. Eng. J., 55 (2016), 1765–1773. https://doi.org/10.1016/j.aej.2016.03.030 doi: 10.1016/j.aej.2016.03.030
|
| [7] | H. Liu, Y. Pan, S. Li, Y. Chen, Adaptive fuzzy backstepping control of fractional-order nonlinear systems, IEEE Trans. Syst., Man, Cybern.: Syst., 47 (2017), 2209–2217. https://doi.org/10.1109/TSMC.2016.2640950 |
| [8] |
J. Ansari, M. Homayounzade, A. R. Abbasi, Innovative load frequency control: integrating adaptive backstepping and disturbance observers, IEEE Access, 13 (2025), 53673–53693. https://doi.org/10.1109/ACCESS.2025.3554141 doi: 10.1109/ACCESS.2025.3554141
|
| [9] |
Z. Farooq, S. A. Lone, T. S. Ustun, A. Rahman, A. Onen, C. Ozansoy, Optimal control strategy for stability performance improvement of hybrid power systems with electric vehicle integration, Energy Sci. Eng., 13 (2025), 2772–2787. https://doi.org/10.1002/ese3.70066 doi: 10.1002/ese3.70066
|
| [10] |
D. Liu, J. S. Giraldo, P. Palensky, P. P. Vergara, Topology identification and parameters estimation of LV distribution networks using open GIS data, Int. J. Electr. Power Energy Syst., 164 (2025), 110395. https://doi.org/10.1016/j.ijepes.2024.110395 doi: 10.1016/j.ijepes.2024.110395
|
| [11] |
A. Gryzlov, E. Magadeev, M. Arsalan, A hybrid approach for predictive control of oil well production using dynamic system identification and real-time parameter estimation, Computation, 13 (2025), 36. https://doi.org/10.3390/computation13020036 doi: 10.3390/computation13020036
|
| [12] | C. A. Monje, Y. Chen, B. M. Vinagre, D. Xue, V. Feliu, Fractional-order systems and controls: fundamentals and applications, Springer London, 2010. https://doi.org/10.1007/978-1-84996-335-0 |
| [13] | M. Elloumi, O. Naifar, H. Gassara, Mamdani fuzzy parameter estimation algorithm for large-scale interconnected nonlinear systems, Proceedings of the 2022 IEEE 21st International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), 2022,428–435. https://doi.org/10.1109/STA56120.2022.10019034 |
| [14] | Y. Wang, T. Li, Stability analysis of fractional‐order nonlinear systems with delay, Math. Probl. Eng., 2014 (2014), 301235. https://doi.org/10.1155/2014/301235 |
| [15] |
M. Elloumi, S. Kamoun, An iterative parametric estimation method for Hammerstein large-scale systems: a simulation study of hydraulic process, Int. J. Simul. Process Model., 11 (2016), 207–219. https://doi.org/10.1504/IJSPM.2016.078501 doi: 10.1504/IJSPM.2016.078501
|
| [16] |
M. Elloumi, S. Kamoun, Design of self-tuning regulator for large-scale interconnected Hammerstein systems, J. Control Sci. Eng., 2016 (2016), 6769714. https://doi.org/10.1155/2016/6769714 doi: 10.1155/2016/6769714
|
| [17] |
M. Elloumi, S. Kamoun, Adaptive control scheme for large-scale interconnected systems described by Hammerstein models, Asian J. Control, 19 (2017), 1075–1088. https://doi.org/10.1002/asjc.1443 doi: 10.1002/asjc.1443
|
| [18] |
M. Elloumi, H. Gassara, O. Naifar, An overview on modelling of complex interconnected nonlinear systems, Math. Probl. Eng., 2022 (2022), 4789405. https://doi.org/10.1155/2022/4789405 doi: 10.1155/2022/4789405
|
| [19] |
T. Wang, S. Tong, Observer-based fuzzy adaptive optimal stabilization control for completely unknown nonlinear interconnected systems, Neurocomputing, 313 (2018), 415–425. https://doi.org/10.1016/j.neucom.2018.06.020 doi: 10.1016/j.neucom.2018.06.020
|
| [20] |
M. Ma, T. Wang, J. Qiu, H. R. Karimi, Adaptive fuzzy decentralized tracking control for large-scale interconnected nonlinear networked control systems, IEEE Trans. Fuzzy Syst., 29 (2021), 3186–3191. https://doi.org/10.1109/TFUZZ.2020.3009727 doi: 10.1109/TFUZZ.2020.3009727
|
| [21] |
B. Alshammari, R. Ben Salah, O. Kahouli, L. Kolsi, Design of fuzzy TS-PDC controller for electrical power system via rules reduction approach, Symmetry, 12 (2020), 2068. https://doi.org/10.3390/sym12122068 doi: 10.3390/sym12122068
|
| [22] | O. Kahouli, B. Alshammari, K. Sebaa, M. Djebali, H. H. Abdallah, Type-2 fuzzy logic controller based PSS for large scale power systems stability, Eng., Technol. Appl. Sci. Res., 8 (2018), 3380–3386. |
| [23] |
Q. Zhoo, P. Du, H. Li, R. Lu, J. Yang, Adaptive fixed-time control of error-constrained pure-feedback interconnected nonlinear systems, IEEE Trans. Syst., Man, Cybern.: Syst., 51 (2021), 6369–6380. https://doi.org/10.1109/TSMC.2019.2961371 doi: 10.1109/TSMC.2019.2961371
|
| [24] | D. D. Siljak, Decentralized control of complex systems, Courier Corporation, 2013. |
| [25] |
O. Naifar, Tempered fractional gradient descent: theory, algorithms, and robust learning applications, Neural Networks, 193 (2025), 108005. https://doi.org/10.1016/j.neunet.2025.108005 doi: 10.1016/j.neunet.2025.108005
|
| [26] |
W. J. Chang, Y. H. Lin, C. C. Ku, A comprehensive survey on advanced control techniques for TS fuzzy systems subject to control input and system output requirements, Processes, 13 (2025), 792. https://doi.org/10.3390/pr13030792 doi: 10.3390/pr13030792
|
| [27] |
J. Wang, W. Xiong, F. Ding, Y. Zhou, E. Yang, Parameter estimation method for separable fractional-order Hammerstein nonlinear systems based on the on-line measurements, Appl. Math. Comput., 488 (2025), 129102. https://doi.org/10.1016/j.amc.2024.129102 doi: 10.1016/j.amc.2024.129102
|
| [28] |
J. Feng, X. Wang, Q. Liu, Y. Xu, J. Kurths, Fusing deep learning features for parameter identification of a stochastic airfoil system, Nonlinear Dyn., 113 (2025), 4211–4233. https://doi.org/10.1007/s11071-024-10152-6 doi: 10.1007/s11071-024-10152-6
|
| [29] |
Y. Li, L. Ni, G. Chen, L. Zhang, N. Yao, G. Wang, Neuro-enhanced fractional hysteresis modeling and identification by modified Newton-Raphson optimizer, Appl. Math. Model., 140 (2025), 115865. https://doi.org/10.1016/j.apm.2024.115865 doi: 10.1016/j.apm.2024.115865
|
| [30] |
W. Hou, S. Ma, Parameter identification of the Black-Scholes model driven by multiplicative fractional Brownian motion, Phys. A: Stat. Mech. Appl., 660 (2025), 130371. https://doi.org/10.1016/j.physa.2025.130371 doi: 10.1016/j.physa.2025.130371
|
| [31] | I. Petras, Fractional calculus and its applications, Math. Model. Multidiscip. Appl., 2012,355–396. |