Copulas are important because they allow for modeling and analyzing the dependence structure between random variables, providing insights into complex relationships beyond linear correlations. In this paper, we produced a compendium of expressions for four of the most popular dependence measures of bivariate copulas. Over twenty-five families of bivariate copulas were considered.
Citation: Saralees Nadarajah, Victor Nawa. A compendium of expressions for dependence measures of bivariate copulas[J]. AIMS Mathematics, 2025, 10(9): 22336-22381. doi: 10.3934/math.2025995
Copulas are important because they allow for modeling and analyzing the dependence structure between random variables, providing insights into complex relationships beyond linear correlations. In this paper, we produced a compendium of expressions for four of the most popular dependence measures of bivariate copulas. Over twenty-five families of bivariate copulas were considered.
| [1] |
M. Ades, S. B. Provost, Y. Zang, Four measures of association and their representations in terms of copulas, AppliedMath, 4 (2024), 363–382. https://doi.org/10.3390/appliedmath4010019 doi: 10.3390/appliedmath4010019
|
| [2] |
M. M. Ali, N. N. Mikhail, M. S. Haq, A class of bivariate distributions including the bivariate logistic, J. Multivariate Anal., 8 (1978), 405–412. https://doi.org/10.1016/0047-259X(78)90063-5 doi: 10.1016/0047-259X(78)90063-5
|
| [3] |
A. A. Alzaid, W. M. Alhadlaq, A new family of Archimedean copulas: the half-logistic family of copulas, Mathematics, 12 (2024), 101. https://doi.org/10.3390/math12010101 doi: 10.3390/math12010101
|
| [4] |
N. Blomqvist, On a measure of dependence between two random variables, Ann. Math. Statist., 21 (1950), 593–600. https://doi.org/10.1214/aoms/1177729754 doi: 10.1214/aoms/1177729754
|
| [5] | Z. Chen, O. Yastremska-Kravchenko, A. Laureshyn, C. Johnsson, C. D'Agostino, Stochastic method based on copulas for predicting severe road traffic interactions, Anal. Methods Accid. Res., 44 (2024), 100347. |
| [6] |
C. Chesneau, On new types of multivariate trigonometric copulas, AppliedMath, 1 (2021), 3–17. https://doi.org/10.3390/appliedmath1010002 doi: 10.3390/appliedmath1010002
|
| [7] |
C. Chesneau, On a weighted version of the Gumbel-Barnett copula, Innov. J. Math., 1 (2022), 1–13. https://doi.org/10.55059/ijm.2022.1.2/19 doi: 10.55059/ijm.2022.1.2/19
|
| [8] |
C. Chesneau, Some new ratio-type copulas: theory and properties, Appl. Math., 49 (2022), 79–101. https://doi.org/10.4064/am2436-12-2021 doi: 10.4064/am2436-12-2021
|
| [9] |
C. Chesneau, Some new developments on variable-power copulas, Appl. Math., 50 (2023), 35–54. https://doi.org/10.4064/am2483-11-2023 doi: 10.4064/am2483-11-2023
|
| [10] |
C. Chesneau, On new three- and two-dimensional ratio-power copulas, Comput. J. Math. Stat. Sci., 2 (2023), 106–122. https://doi.org/10.21608/cjmss.2023.195134.1005 doi: 10.21608/cjmss.2023.195134.1005
|
| [11] | C. Chesneau, Investigation of a variable-power FGM-type copula, Stoch. Models Probab. Stat., 1 (2024), 17–36. |
| [12] |
D. G. Clayton, A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence, Biometrika, 65 (1978), 141–151. https://doi.org/10.2307/2335289 doi: 10.2307/2335289
|
| [13] |
F. Durante, Construction of non-exchangeable bivariate distribution functions, Stat. Pap., 50 (2009), 383–391. https://doi.org/10.1007/s00362-007-0064-5 doi: 10.1007/s00362-007-0064-5
|
| [14] | F. Durante, C. Sempi, Principles of copula theory, New York: Chapman and Hall/CRC, 2015. https://doi.org/10.1201/b18674 |
| [15] |
F. Durante, P. Jaworski, R. Mesiar, Invariant dependence structures and Archimedean copulas, Stat. Probab. Lett., 81 (2011), 1995–2003. https://doi.org/10.1016/j.spl.2011.08.018 doi: 10.1016/j.spl.2011.08.018
|
| [16] |
F. El Ktaibi, R. Bentoumi, M. Mesfioui, On the ratio-type family of copulas, Mathematics, 12 (2024), 1743. https://doi.org/10.3390/math12111743 doi: 10.3390/math12111743
|
| [17] | D. J. G. Farlie, The performance of some correlation coefficients for a general bivariate distribution, Biometrika, 47 (1960), 307–323. |
| [18] | E. J. Gumbel, Distributions á plusieurs variables dont les marges sont données, C. R. Acad. Sci. Paris, 246 (1958), 2717–2719. |
| [19] |
E. J. Gumbel, Bivariate exponential distributions, J. Amer. Stat. Assoc., 55 (1960), 698–707. https://doi.org/10.2307/2281591 doi: 10.2307/2281591
|
| [20] | W. Hoeffding, Masstabinvariante Korrelationstheorie, Schr. Math. Inst. Inst. Angew. Math. Univ. Berlin, 5 (1940), 181–233. |
| [21] | H. Joe, Dependence modeling with copulas, New York: Chapman and Hall/CRCs, 2014. https://doi.org/10.1201/b17116 |
| [22] |
M. G. Kendall, A new measure of rank correlation, Biometrika, 30 (1938), 81–93. https://doi.org/10.1093/biomet/30.1-2.81 doi: 10.1093/biomet/30.1-2.81
|
| [23] | P. Kumar, Probability distributions and estimation of Ali–Mikhail–Haq copula, Appl. Math. Sci., 4 (2010), 657–666. |
| [24] | D. Morgenstern, Einfache beispiele zweidimensionaler verteilungen, Mitteilingsblatt für Math. Stat., 8 (1956), 234–235. |
| [25] | R. B. Nelsen, An introduction to copulas, New York: Springer, 2006. https://doi.org/10.1007/0-387-28678-0 |
| [26] |
J. Power, M. P. Côté, T. Duchesne, A flexible hierarchical insurance claims model with gradient boosting and copulas, N. Am. Actuar. J., 28 (2024), 772–800. https://doi.org/10.1080/10920277.2023.2279782 doi: 10.1080/10920277.2023.2279782
|
| [27] |
T. Qian, Z. Shi, S. Gu, W. Xi, J. Chen, J. Chen, et al., A water shortage risk assessment model based on kernel density estimation and copulas, Water, 16 (2024), 1465. https://doi.org/10.3390/w16111465 doi: 10.3390/w16111465
|
| [28] |
M. Schreyer, R. Paulin, W. Trutschnig, On the exact region determined by Kendall's $\tau$ and Spearman's $\rho$, J. R. Stat. Soc. B, 79 (2017), 613–633. https://doi.org/10.1111/rssb.12181 doi: 10.1111/rssb.12181
|
| [29] | Z. Sharifonnasabi, M. H. Alamatsaz, I. Kazemi, A large class of new bivariate copulas and their properties, Braz. J. Probab. Stat., 32 (2018), 497–524. |
| [30] |
J. Shen, H. Liu, On the structure dynamic response induced by the dam-break surge impact using multivariate copulas, Ocean Eng., 306 (2024), 118100. https://doi.org/10.1016/j.oceaneng.2024.118100 doi: 10.1016/j.oceaneng.2024.118100
|
| [31] |
J. H. Shih, T. Emura, Bivariate dependence measures and bivariate competing risks models under the generalized FGM copula, Stat. Papers, 60 (2019), 1101–1118. https://doi.org/10.1007/s00362-016-0865-5 doi: 10.1007/s00362-016-0865-5
|
| [32] |
K. Shiraya, T. Yamakami, Constructing copulas using corrected Hermite polynomial expansion for estimating cross foreign exchange volatility, Eur. J. Oper. Res., 314 (2024), 1195–1214. https://doi.org/10.1016/j.ejor.2023.11.033 doi: 10.1016/j.ejor.2023.11.033
|
| [33] | A. Sklar, Fonctions de répartition à $n$ dimensions et leurs marges, Annales de l'ISUP, 8 (1959), 229–231. |