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1. Introduction

In statistics, a copula is a mathematical concept used to describe the dependence structure between
random variables. It allows researchers to model and understand the relationships between variables,
particularly their joint distribution, without making assumptions about the marginal distributions.
A copula is a function that links univariate marginal distribution functions to form a multivariate
distribution function. Formally, a copula C is a multivariate cumulative distribution function with
uniform marginals on the interval [0, 1].

Sklar’s theorem [33] is fundamental in the theory of copulas. It states that for any bivariate joint
distribution function H with marginals F1, F2, there exists a copula C such that

H (x1, x2) = C (F1 (x1) , F2 (x2)) .

If F1, F2 are continuous, the copula C is unique. Conversely, given a copula C and marginal distribution
functions F1, F2, the function H defined above is a joint distribution function with F1, F2 as its
marginals. Let c(x, y) = ∂2

∂x∂yC(x, y) denote the copula density.
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Application areas of copulas include finance, insurance, hydrology, engineering and economics.
Some recent papers on applications of copulas include [5, 26, 27, 30, 32]. Comprehensive accounts of
the theory of copulas can be found in [25, 14, 21].

The aim of this paper is to derive expressions for dependence measures for bivariate copulas. Given
a copula C : [0, 1]× [0, 1]→ [0, 1], the four most popular dependence measures are Blomqvist’s β∗ [4],
Kendall’s τ [22], Spearman’s ρ and Hoeffding’s Φ2 [20], see also [1]. They are defined by

β∗ = 4C
(
1
2
,

1
2

)
− 1, (1.1)

τ = 4
∫ 1

0

∫ 1

0
C(x, y)dC(x, y) − 1, (1.2)

ρ = 12
∫ 1

0

∫ 1

0
xydC(x, y) − 3 (1.3)

and

Φ2 = 90
∫ 1

0

∫ 1

0

[
C(x, y) − xy

]2 dxdy, (1.4)

respectively.
The ranges of these dependence measures are −1 ≤ β∗ ≤ 3, −1 ≤ τ ≤ 1, −1 ≤ ρ ≤ 1 and 0 ≤ Φ2 ≤ 1.

Furthermore,

Ψ(τ) ≤ ρ ≤ Ψ(−τ),

where

Ψ(x) =


−1, if x = −1,

Ψn(x), if 2−n
n ≤ x ≤ 3−n

n−1 for some n ≥ 2,

where

Ψn(x) = −1 −
4
n2 +

3
n
+

3x
n
−

(n − 2)(n − 2 + nx)
3
2

√
2(n − 1)n2

.

This result is due to [28].
Blomqvist’s β∗, Kendall’s τ, Spearman’s ρ and Hoeffding’sΦ2 are statistical measures that assess the

relationship between two variables, but they capture different aspects of this relationship. Blomqvist’s
β∗ is a measure of concordance that focuses on the median of the joint distribution, making it robust
to outliers and suitable for non-parametric settings. Kendall’s τ measures the strength of monotonic
relationships by comparing the number of concordant and discordant pairs of observations, offering
an intuitive interpretation and resilience to nonlinear associations. Spearman’s ρ is a rank-based
correlation coefficient that assesses the monotonic relationship between variables, sensitive to all rank
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orders, making it more influenced by extreme values than Kendall’s τ. Hoeffding’s Φ2 is a measure
of dependence that detects nonlinear relationships by evaluating the joint distribution’s deviation from
independence, making it powerful for identifying complex associations.

While all these measures share the goal of quantifying dependence, they differ in sensitivity and
scope. Kendall’s τ and Spearman’s ρ are closely related and often yield similar results, but Kendall’s
τ provides a more natural probabilistic interpretation. Blomqvist’s β∗ is simpler and focuses on central
relationships, while Hoeffding’s Φ2 stands out by detecting broader nonlinear dependencies at the cost
of being less interpretable in common applications. Choosing among these measures depends on the
type of relationship, robustness needed, and interpretive clarity desired.

Having exact expressions for (1.1) to (1.4) provides significant advantages in statistical analysis
and dependence modeling. Exact expressions enable precise computation without relying on
approximations, which is especially beneficial for small sample sizes or when assessing subtle
dependencies. They facilitate analytical comparisons among measures, enhancing the understanding
of their behavior and interrelationships under different data scenarios. Moreover, exact formulas allow
for efficient implementation in software, reducing computational overhead and improving the accuracy
of results in real-world applications, such as hypothesis testing and copula modeling. These benefits
make them invaluable tools for rigorous and reproducible statistical research.

Closed form expressions for (1.1) to (1.4) are not known for many bivariate copulas. In this paper,
we state expressions enabling closed form expressions for (1.1) to (1.4), see Section 2. The expressions
in Section 2 excluding Sections 2.1, 2.2, 2.5, 2.26 and 2.27 are new and original. Their derivations can
be obtained from the corresponding author. Nearly thirty classes of bivariate copulas are considered.
Conclusions and the use of the expressions in Section 2 are discussed in Section 3.

2. Exact expressions for dependence measures

In this section, we state without derivations general expressions for (1.1) to (1.4) for survival
copulas, Bernstein copulas, power type copulas, Archimedean copulas, [3]’s copulas, [16]’s copulas,
Farlie-Gumbel-Morgenstern (FGM) type copulas, Chesneau [6]’s copulas, Chesneau [7, 8]’s copulas,
linear combination of copulas, power combination of copulas, [13]’s copulas, [15]’s copulas, [23]’s
perturbed copulas, [29]’s copulas, Gaussian copula and Student’s t copula. Most of these expressions
are new and original.

2.1. Survival copulas

Survival copulas are a type of copula function used to model the dependence structure between
random variables by focusing on their joint survival (upper tail) probabilities rather than their lower
tail behavior. They are particularly useful in risk management, reliability engineering, and actuarial
science, where understanding the likelihood of extreme co-occurring events (for example, simultaneous
failures or high losses) is crucial. For a survival copula given by

C(x, y) = x + y − 1 + B(1 − x, 1 − y)

for 0 < x < 1 and 0 < y < 1, where B is a valid copula, we have

c(x, y) = b(1 − x, 1 − y),
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β∗ = 4B
(
1
2
,

1
2

)
− 1,

τ = 4
∫ 1

0

∫ 1

0

[
x + y − 1 + B(1 − x, 1 − y)

]
b(1 − x, 1 − y)dxdy − 1,

ρ = 12
∫ 1

0

∫ 1

0
xyb(1 − x, 1 − y)dxdy − 3

and

Φ2 = 90
∫ 1

0

∫ 1

0

[
B(1 − x, 1 − y) − (1 − x)(1 − y)

]2 dxdy,

where b(x, y) = ∂2

∂x∂yB(x, y).

2.2. Bernstein copulas

A Bernstein copula is a type of copula function that leverages Bernstein polynomials to approximate
the underlying copula structure, offering a non-parametric way to model dependency between random
variables. These copulas are particularly useful for capturing complex, nonlinear dependencies in
bivariate data. Bernstein copulas are flexible and can approximate any copula as the degree of the
Bernstein polynomial increases, making them powerful tools for modeling relationships without strong
assumptions about the form of dependence. They are often employed in statistical and financial
applications where understanding joint distributions is crucial.

For Bernstein copulas specified given by

C(x, y) =
m∑

i=0

n∑
j=0

α
( i
m
,

j
n

) (m
i

)
xi(1 − x)m−i

(
n
j

)
y j(1 − y)n− j

for 0 < x < 1 and 0 < y < 1, where α
(

i
m ,

j
n

)
is a real valued constant indexed by (i, j) such that

0 ≤ i ≤ m, 0 ≤ j ≤ n, we have

c(x, y) =
m∑

i=0

n∑
j=0

α
( i
m
,

j
n

) (m
i

) [
ixi(1 − x)m−i − (m − i)xi(1 − x)m−i−1

]
·

(
n
j

) [
jy j(1 − y)n− j − (n − j)y j(1 − y)n− j−1

]
,

β∗ = 22−m−n
m∑

i=0

n∑
j=0

α
( i
m
,

j
n

) (m
i

)(
n
j

)
− 1,

τ = 4
m∑

i=0

n∑
j=0

m∑
k=0

n∑
ℓ=0

α
( i
m
,

j
n

)
α

(
k
m
,
ℓ

n

) (
m
i

)(
m
k

)(
n
j

)(
n
ℓ

)
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· [iB(i + k + 1, 2m − i − k + 1) − (m − i)B(i + k + 1, 2m − i − k)]
·
[
jB( j + ℓ + 1, 2n − j − ℓ + 1) − (n − j)B( j + ℓ + 1, 2n − j − ℓ)

]
,

ρ = 12
m∑

i=0

n∑
j=0

α
( i
m
,

j
n

) (m
i

)
[iB(i + 2,m − i + 1) − (m − i)B(i + 2,m − i)]

·

(
n
j

) [
jB( j + 2, n − j + 1) − (n − j)B( j + 2, n − j)

]
− 3

and

Φ2 = 90
m∑

i=0

n∑
j=0

m∑
k=0

n∑
ℓ=0

α
( i
m
,

j
n

)
α

(
k
m
,
ℓ

n

) (
m
i

)(
m
k

)(
n
j

)(
n
ℓ

)
· B(i + k + 1, 2m − i − k + 1)B( j + ℓ + 1, 2n − j − ℓ + 1)

− 180
m∑

i=0

n∑
j=0

α
( i
m
,

j
n

) (m
i

)
B(i + 2,m − i + 1)

(
n
j

)
B( j + 2, n − j + 1) + 10,

where B(a, b) denotes the beta function.

2.3. Power type copulas [9, 10]

For the copulas given by

C(x, y) = xP(x,y)yQ(x,y)

for 0 < x < 1 and 0 < y < 1, where P(x, y) and Q(x, y) are suitable functions such that C(0, 0) = 0,
C(0, 1) = 0, C(1, 0) = 0 and C(1, 1) = 1, we have

c(x, y) = xP(x,y)−1yQ(x,y)P(x, y)
∂P(x, y)
∂y

log x + xP(x,y)yQ(x,y)∂P(x, y)
∂x

∂P(x, y)
∂y

(log x)2

+ xP(x,y)−1yQ(x,y)∂P(x, y)
∂y

+ xP(x,y)yQ(x,y)∂
2P(x, y)
∂x∂y

log x

+ xP(x,y)−1yQ(x,y)−1P(x, y)Q(x, y) + xP(x,y)−1yQ(x,y)P(x, y)
∂Q(x, y)
∂y

log y

+ xP(x,y)yQ(x,y)−1∂P(x, y)
∂x

Q(x, y) log x + xP(x,y)yQ(x,y)∂P(x, y)
∂x

∂Q(x, y)
∂y

log x log y

+ xP(x,y)yQ(x,y)∂P(x, y)
∂y

∂Q(x, y)
∂x

log x log y

+ xP(x,y)yQ(x,y)−1∂Q(x, y)
∂x

Q(x, y) log y + xP(x,y)yQ(x,y)∂Q(x, y)
∂x

∂Q(x, y)
∂y

(log y)2

+ xP(x,y)yQ(x,y)−1∂Q(x, y)
∂x

+ xP(x,y)yQ(x,y)∂
2Q(x, y)
∂x∂y

log y,

β∗ = 22−P( 1
2 ,

1
2 )−Q( 1

2 ,
1
2 ) − 1,
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τ = 4
∫ 1

0

∫ 1

0
x2P(x,y)−1y2Q(x,y)P(x, y)

∂P(x, y)
∂y

log xdxdy

+ 4
∫ 1

0

∫ 1

0
x2P(x,y)y2Q(x,y)∂P(x, y)

∂x
∂P(x, y)
∂y

(log x)2dxdy

+ 4
∫ 1

0

∫ 1

0
x2P(x,y)−1y2Q(x,y)∂P(x, y)

∂y
dxdy

+ 4
∫ 1

0

∫ 1

0
x2P(x,y)y2Q(x,y)∂

2P(x, y)
∂x∂y

log xdxdy

+ 4
∫ 1

0

∫ 1

0
x2P(x,y)−1y2Q(x,y)−1P(x, y)Q(x, y)dxdy

+ 4
∫ 1

0

∫ 1

0
x2P(x,y)−1y2Q(x,y)P(x, y)

∂Q(x, y)
∂y

log ydxdy

+ 4
∫ 1

0

∫ 1

0
x2P(x,y)y2Q(x,y)−1∂P(x, y)

∂x
Q(x, y) log xdxdy

+ 4
∫ 1

0

∫ 1

0
x2P(x,y)y2Q(x,y)∂P(x, y)

∂x
∂Q(x, y)
∂y

log x log ydxdy

+ 4
∫ 1

0

∫ 1

0
x2P(x,y)y2Q(x,y)∂P(x, y)

∂y
∂Q(x, y)
∂x

log x log ydxdy

+ 4
∫ 1

0

∫ 1

0
x2P(x,y)y2Q(x,y)−1∂Q(x, y)

∂x
Q(x, y) log ydxdy

+ 4
∫ 1

0

∫ 1

0
x2P(x,y)y2Q(x,y)∂Q(x, y)

∂x
∂Q(x, y)
∂y

(log y)2dxdy

+ 4
∫ 1

0

∫ 1

0
x2P(x,y)y2Q(x,y)−1∂Q(x, y)

∂x
dxdy

+ 4
∫ 1

0

∫ 1

0
x2P(x,y)y2Q(x,y)∂

2Q(x, y)
∂x∂y

log ydxdy − 1,

ρ = 12
∫ 1

0

∫ 1

0
xP(x,y)yQ(x,y)+1P(x, y)

∂P(x, y)
∂y

log xdxdy

+ 12
∫ 1

0

∫ 1

0
xP(x,y)+1yQ(x,y)+1∂P(x, y)

∂x
∂P(x, y)
∂y

(log x)2dxdy

+ 12
∫ 1

0

∫ 1

0
xP(x,y)yQ(x,y)+1∂P(x, y)

∂y
dxdy

+ 12
∫ 1

0

∫ 1

0
xP(x,y)+1yQ(x,y)+1∂

2P(x, y)
∂x∂y

log xdxdy

+ 12
∫ 1

0

∫ 1

0
xP(x,y)yQ(x,y)P(x, y)Q(x, y)dxdy

+ 12
∫ 1

0

∫ 1

0
xP(x,y)yQ(x,y)+1P(x, y)

∂Q(x, y)
∂y

log ydxdy
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+ 12
∫ 1

0

∫ 1

0
xP(x,y)+1yQ(x,y)∂P(x, y)

∂x
Q(x, y) log xdxdy

+ 12
∫ 1

0

∫ 1

0
xP(x,y)+1yQ(x,y)+1∂P(x, y)

∂x
∂Q(x, y)
∂y

log x log ydxdy

+ 12
∫ 1

0

∫ 1

0
xP(x,y)+1yQ(x,y)+1∂P(x, y)

∂y
∂Q(x, y)
∂x

log x log ydxdy

+ 12
∫ 1

0

∫ 1

0
xP(x,y)+1yQ(x,y)∂Q(x, y)

∂x
Q(x, y) log ydxdy

+ 12
∫ 1

0

∫ 1

0
xP(x,y)+1yQ(x,y)+1∂Q(x, y)

∂x
∂Q(x, y)
∂y

(log y)2dxdy

+ 12
∫ 1

0

∫ 1

0
xP(x,y)+1yQ(x,y)∂Q(x, y)

∂x
dxdy

+ 12
∫ 1

0

∫ 1

0
xP(x,y)+1yQ(x,y)+1∂

2Q(x, y)
∂x∂y

log ydxdy − 3

and

Φ2 = 90
∫ 1

0

∫ 1

0
x2P(x,y)y2Q(x,y)dxdy − 180

∫ 1

0

∫ 1

0
xP(x,y)+1yQ(x,y)+1dxdy + 10.

2.4. Power type copulas [9, 10]

We consider the particular case in Section 2.3 for P(x, y) = Q(x, y). For the copulas given by

C(x, y) = xP(x,y)yP(x,y) (2.1)

for 0 < x < 1, 0 < y < 1 and P(x, y) in a suitable function, we have

c(x, y) = xP(x,y)−1yP(x,y)P(x, y)
∂P(x, y)
∂y

log x + xP(x,y)yP(x,y)∂P(x, y)
∂x

∂P(x, y)
∂y

(log x)2

+ xP(x,y)−1yP(x,y)∂P(x, y)
∂y

+ xP(x,y)yP(x,y)∂
2P(x, y)
∂x∂y

log x

+ xP(x,y)−1yP(x,y)−1P2(x, y) + xP(x,y)−1yP(x,y)P(x, y)
∂P(x, y)
∂y

log y

+ xP(x,y)yP(x,y)−1∂P(x, y)
∂x

P(x, y) log x + 2xP(x,y)yP(x,y)∂P(x, y)
∂x

∂P(x, y)
∂y

log x log y

+ xP(x,y)yP(x,y)−1∂P(x, y)
∂x

P(x, y) log y + xP(x,y)yP(x,y)∂P(x, y)
∂x

∂P(x, y)
∂y

(log y)2

+ xP(x,y)yP(x,y)−1∂P(x, y)
∂x

+ xP(x,y)yP(x,y)∂
2P(x, y)
∂x∂y

log y,

β∗ = 22−2P( 1
2 ,

1
2 ) − 1,

τ = 4
∫ 1

0

∫ 1

0
x2P(x,y)−1y2P(x,y)P(x, y)

∂P(x, y)
∂y

log xdxdy
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+ 4
∫ 1

0

∫ 1

0
x2P(x,y)y2P(x,y)∂P(x, y)

∂x
∂P(x, y)
∂y

(log x)2dxdy

+ 4
∫ 1

0

∫ 1

0
x2P(x,y)−1y2P(x,y)∂P(x, y)

∂y
dxdy

+ 4
∫ 1

0

∫ 1

0
x2P(x,y)y2P(x,y)∂

2P(x, y)
∂x∂y

log xdxdy

+ 4
∫ 1

0

∫ 1

0
x2P(x,y)−1y2P(x,y)−1P2(x, y)dxdy

+ 4
∫ 1

0

∫ 1

0
x2P(x,y)−1y2P(x,y)P(x, y)

∂P(x, y)
∂y

log ydxdy

+ 4
∫ 1

0

∫ 1

0
x2P(x,y)y2P(x,y)−1∂P(x, y)

∂x
P(x, y) log xdxdy

+ 8
∫ 1

0

∫ 1

0
x2P(x,y)y2P(x,y)∂P(x, y)

∂x
∂P(x, y)
∂y

log x log ydxdy

+ 4
∫ 1

0

∫ 1

0
x2P(x,y)y2P(x,y)−1∂P(x, y)

∂x
P(x, y) log ydxdy

+ 4
∫ 1

0

∫ 1

0
x2P(x,y)y2P(x,y)∂P(x, y)

∂x
∂P(x, y)
∂y

(log y)2dxdy

+ 4
∫ 1

0

∫ 1

0
x2P(x,y)y2P(x,y)−1∂P(x, y)

∂x
dxdy

+ 4
∫ 1

0

∫ 1

0
x2P(x,y)y2P(x,y)∂

2P(x, y)
∂x∂y

log ydxdy − 1,

ρ = 12
∫ 1

0

∫ 1

0
xP(x,y)yP(x,y)+1P(x, y)

∂P(x, y)
∂y

log xdxdy

+ 12
∫ 1

0

∫ 1

0
xP(x,y)+1yP(x,y)+1∂P(x, y)

∂x
∂P(x, y)
∂y

(log x)2dxdy

+ 12
∫ 1

0

∫ 1

0
xP(x,y)yP(x,y)+1∂P(x, y)

∂y
dxdy

+ 12
∫ 1

0

∫ 1

0
xP(x,y)+1yP(x,y)+1∂

2P(x, y)
∂x∂y

log xdxdy

+ 12
∫ 1

0

∫ 1

0
xP(x,y)yP(x,y)P2(x, y)dxdy

+ 12
∫ 1

0

∫ 1

0
xP(x,y)yP(x,y)+1P(x, y)

∂P(x, y)
∂y

log ydxdy

+ 12
∫ 1

0

∫ 1

0
xP(x,y)+1yP(x,y)∂P(x, y)

∂x
P(x, y) log xdxdy

+ 24
∫ 1

0

∫ 1

0
xP(x,y)+1yP(x,y)+1∂P(x, y)

∂x
∂P(x, y)
∂y

log x log ydxdy
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+ 12
∫ 1

0

∫ 1

0
xP(x,y)+1yP(x,y)∂P(x, y)

∂x
P(x, y) log ydxdy

+ 12
∫ 1

0

∫ 1

0
xP(x,y)+1yP(x,y)+1∂P(x, y)

∂x
∂P(x, y)
∂y

(log y)2dxdy

+ 12
∫ 1

0

∫ 1

0
xP(x,y)+1yP(x,y)∂P(x, y)

∂x
dxdy

+ 12
∫ 1

0

∫ 1

0
xP(x,y)+1yP(x,y)+1∂

2P(x, y)
∂x∂y

log ydxdy − 3

and

Φ2 = 90
∫ 1

0

∫ 1

0
x2P(x,y)y2P(x,y)dxdy − 180

∫ 1

0

∫ 1

0
xP(x,y)+1yP(x,y)+1dxdy + 10.

An example of (2.1) with P(x, y) = 1 + a(1 − x)(1 − y), 0 ≤ a ≤ 1 is given by Proposition 1 in
Chesneau [11].

2.5. Archimedean copulas

Archimedean copulas are a family of copulas used in statistics to model the dependence structure
between random variables, defined through a generator function that is both decreasing and convex.
They are popular for their simplicity and flexibility, allowing for a wide range of dependency patterns
by varying the generator function. A copula C is called Archimedean if it admits the representation

C(x, y; θ) = g−1 (g(x; θ) + g(y; θ); θ) ,

where g : [0, 1] × Θ → [0,∞) is a continuous, strictly decreasing and convex function such that
g(1; θ) = 0, θ is a parameter within some parameter space Θ, and g is the so-called generator function
and g−1 is its pseudo-inverse defined by

g−1(t; θ) =


g−1(t; θ), if 0 ≤ t ≤ g(0; θ),

0, if g(0; θ) ≤ t ≤ ∞.

For Archimedean copulas specified by

C(x, y) = g−1 (g(x) + g(y))

for 0 < x < 1 and 0 < y < 1, we have

c(x, y) = −
g
′

(x)g
′

(y)g
′′
(
g−1 (g(x) + g(y))

)
[
g′

(
g−1 (g(x) + g(y))

)]3 ,

β∗ = 4g−1
(
2g

(
1
2

))
− 1,
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τ = 1 + 4
∫ 1

0

g(t)
g′(t)

dt,

ρ = −12
∫ 1

0

∫ 1

0

xyg
′

(x)g
′

(y)g
′′
(
g−1 (g(x) + g(y))

)
[
g′

(
g−1 (g(x) + g(y))

)]3 dxdy − 3

and

Φ2 = 90
∫ 1

0

∫ 1

0

[
g−1 (g(x) + g(y))

]2
dxdy − 180

∫ 1

0

∫ 1

0
xyg−1 (g(x) + g(y)) dxdy + 10.

We now give three examples. For Clayton copula [12], g(t) = t−θ−1
θ

, g−1(t) = (1+θt)−
1
θ , g

′

(t) = −t−θ−1

and g
′′

(t) = (1 + θ)t−θ−2 for θ ∈ [−1,∞)\ {0}. So,

C(x, y) =


(
x−θ + y−θ − 1

)− 1
θ
, if 0 < x < 1, 0 < y < 1, x−θ + y−θ > 1,

0, otherwise,

c(x, y) =


(θ + 1)x−θ−1y−θ−1

(
x−θ + y−θ − 1

)− 1
θ−2

, if 0 < x < 1, 0 < y < 1, x−θ + y−θ > 1,

0, otherwise,

β∗ = 4
(
2θ+1 − 1

)− 1
θ
− 1,

τ =
θ

θ + 2
,

ρ = 12(θ + 1)
∫ 1

0

∫ 1

0
I
{
x−θ + y−θ > 1

}
x−θy−θ

(
x−θ + y−θ − 1

)− 1
θ−2

dxdy − 3

and

Φ2 = 90
∫ 1

0

∫ 1

0
I
{
x−θ + y−θ > 1

} (
x−θ + y−θ − 1

)− 2
θ dxdy

− 180
∫ 1

0

∫ 1

0
I
{
x−θ + y−θ > 1

}
xy

(
x−θ + y−θ − 1

)− 1
θ dxdy + 10.

For Ali, Mikhail and Haq’s copula [2], g(t) = log
[

1−θ(1−t)
t

]
, g−1(t) = 1−θ

exp(t)−θ , g
′

(t) = − 1−θ
t[1−θ(1−t)] and

g
′′

(t) = (1−θ)(1−θ+2θt)
t2[1−θ(1−t)]2 for −1 ≤ θ ≤ 1. So,

C(x, y) =
xy

1 − θ(1 − x)(1 − y)
,
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c(x, y) =
1

1 − θ(1 − x)(1 − y)
−

θ(1 − x)y[
1 − θ(1 − x)(1 − y)

]2 −
θx(1 − 2y)[

1 − θ(1 − x)(1 − y)
]2 +

2θ2xy(1 − x)(1 − y)[
1 − θ(1 − x)(1 − y)

]3 ,

β∗ =
4(1 − θ)

(2 − θ)2 − θ
− 1,

τ =
2(1 − θ)3 log(1 − θ)

3θ2 −
4
[
1 − (1 − θ)3

]
9θ2 +

(1 − θ)
[
1 − (1 − θ)2

]
4θ2 −

5θ
9
,

ρ =

∫ 1

0

∫ 1

0

12xy
1 − θ(1 − x)(1 − y)

dxdy −
∫ 1

0

∫ 1

0

12θx(1 − x)y2[
1 − θ(1 − x)(1 − y)

]2 dxdy

−

∫ 1

0

∫ 1

0

12θx2y(1 − 2y)[
1 − θ(1 − x)(1 − y)

]2 dxdy

+

∫ 1

0

∫ 1

0

24θ2x2y2(1 − x)(1 − y)[
1 − θ(1 − x)(1 − y)

]3 dxdy − 3

and

Φ2 = 90
∫ 1

0

∫ 1

0

(1 − θ)2x2y2{
[1 − θ(1 − x)]

[
1 − θ(1 − y)

]
− θxy

}2 dxdy

− 180
∫ 1

0

∫ 1

0

(1 − θ)x2y2

[1 − θ(1 − x)]
[
1 − θ(1 − y)

]
− θxy

dxdy + 10.

For Gumbel–Hougaard’s copula [25], g(t) =
(
− log t

)θ, g−1(t) = exp
(
−t

1
θ

)
, g

′

(t) = − θt
(
− log t

)θ−1

and g
′′

(t) = θ
t2
(
− log t

)θ−1
+

θ(θ−1)
t2

(
− log t

)θ−2 for θ ≥ 1. So,

C(x, y) = exp
{
−

[
(− log x)θ + (− log y)θ

] 1
θ

}
,

c(x, y) = C(x, y)
1
xy

(− log x)θ−1(− log y)θ−1
[
(− log x)θ + (− log y)θ

] 2
θ−2

− (1 − θ)C(x, y)
1
xy

(− log x)θ−1(− log y)θ−1
[
(− log x)θ + (− log y)θ

] 1
θ−2

,

β∗ = 22−2
1
θ
− 1,

τ = 1 −
1
θ
,

ρ = 12
∫ 1

0

∫ 1

0
C(x, y)

1
xy

(− log x)θ−1(− log y)θ−1
[
(− log x)θ + (− log y)θ

] 2
θ−2

dxdy
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− 12(1 − θ)
∫ 1

0

∫ 1

0
C(x, y)

1
xy

(− log x)θ−1(− log y)θ−1
[
(− log x)θ + (− log y)θ

] 1
θ−2

dxdy − 3

and

Φ2 = 90
∫ 1

0

∫ 1

0
exp

{
−2

[
(− log x)θ + (− log y)θ

] 1
θ

}
dxdy

− 180
∫ 1

0

∫ 1

0
xy exp

{
−

[
(− log x)θ + (− log y)θ

] 1
θ

}
dxdy + 10.

2.6. Alzaid and Alhadlaq [3]’s copulas

For the copulas given by

C(x, y) = F−1 (F(x)F(y))

for 0 < x < 1 and 0 < y < 1, where F is a strictly increasing log-concave cumulative distribution
function, we have

c(x, y) =
f (x) f (y)

[
f (F(x)F(y)) − F(x)F(y) f

′ (F(x)F(y))
]

[
f (F(x)F(y))

]2 ,

β∗ = 4F−1

[F (
1
2

)]2 − 1,

τ = 4
∫ 1

0

∫ 1

0

F−1 (F(x) + F(y)) f (x) f (y)
[
f (F(x)F(y)) − F(x)F(y) f

′ (F(x)F(y))
]

[
f (F(x)F(y))

]2 dxdy − 1,

ρ = 12
∫ 1

0

∫ 1

0

xy f (x) f (y)
[
f (F(x)F(y)) − F(x)F(y) f

′ (F(x)F(y))
]

[
f (F(x)F(y))

]2 dxdy − 3

and

Φ2 = 90
∫ 1

0

∫ 1

0

[
F−1 (F(x)F(y))

]2
dxdy − 180

∫ 1

0

∫ 1

0
xyF−1 (F(x)F(y)) dxdy + 10.

2.7. El Ktaibi et al. [16]’s copulas

For the copulas given by

C(x, y) =
xy

1 − θϕ(x, y)
= xy

∞∑
i=0

θi [ϕ(x, y)
]i

for 0 < x < 1, 0 < y < 1, and suitable values of θ and ϕ(x, y) in a suitable function, we have
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c(x, y) =
1

1 − θϕ(x, y)
+

θy[
1 − θϕ(x, y)

]2

∂ϕ(x, y)
∂y

+
θx[

1 − θϕ(x, y)
]2

∂ϕ(x, y)
∂x

+
θxy[

1 − θϕ(x, y)
]2

∂2ϕ(x, y)
∂x∂y

+
2θ2xy[

1 − θϕ(x, y)
]3

∂ϕ(x, y)
∂x

∂ϕ(x, y)
∂y

=

∞∑
i=0

θi [ϕ(x, y)
]i
+ θy

∞∑
i=0

(i + 1)θi [ϕ(x, y)
]i ∂ϕ(x, y)

∂y

+ θx
∞∑

i=0

(i + 1)θi [ϕ(x, y)
]i ∂ϕ(x, y)

∂x

+ θxy
∞∑

i=0

(i + 1)θi [ϕ(x, y)
]i ∂

2ϕ(x, y)
∂x∂y

+ 2θ2xy
∞∑

i=0

(i + 1)(i + 2)θi [ϕ(x, y)
]i ∂ϕ(x, y)

∂x
∂ϕ(x, y)
∂y

,

β∗ =
θϕ

(
1
2 ,

1
2

)
1 − θϕ

(
1
2 ,

1
2

) ,

τ = 4
∞∑

i=0

∞∑
j=0

θi+ j
∫ 1

0

∫ 1

0
xy

[
ϕ(x, y)

]i+ j dxdy

+ 4θ
∞∑

i=0

∞∑
j=0

( j + 1)θi+ j
∫ 1

0

∫ 1

0
xy2 [

ϕ(x, y)
]i+ j ∂ϕ(x, y)

∂y
dxdy

+ 4θ
∞∑

i=0

∞∑
j=0

( j + 1)θi+ j
∫ 1

0

∫ 1

0
x2y

[
ϕ(x, y)

]i+ j ∂ϕ(x, y)
∂x

dxdy

+ 4θ
∞∑

i=0

∞∑
j=0

( j + 1)θi+ j
∫ 1

0

∫ 1

0
x2y2 [

ϕ(x, y)
]i+ j ∂

2ϕ(x, y)
∂x∂y

dxdy

+ 8θ2
∞∑

i=0

∞∑
j=0

( j + 1)( j + 2)θi+ j
∫ 1

0

∫ 1

0
x2y2 [

ϕ(x, y)
]i+ j ∂ϕ(x, y)

∂x
∂ϕ(x, y)
∂y

dxdy − 1,

ρ = 12
∞∑

i=0

θi
∫ 1

0

∫ 1

0
xy

[
ϕ(x, y)

]i dxdy + 12θ
∞∑

i=0

(i + 1)θi
∫ 1

0

∫ 1

0
xy2 [

ϕ(x, y)
]i ∂ϕ(x, y)

∂y
dxdy

+ 12θ
∞∑

i=0

(i + 1)θi
∫ 1

0

∫ 1

0
x2y

[
ϕ(x, y)

]i ∂ϕ(x, y)
∂x

dxdy
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+ 12θ
∞∑

i=0

(i + 1)θi
∫ 1

0

∫ 1

0
x2y2 [

ϕ(x, y)
]i ∂

2ϕ(x, y)
∂x∂y

dxdy

+ 24θ2
∞∑

i=0

(i + 1)(i + 2)θi
∫ 1

0

∫ 1

0
x2y2 [

ϕ(x, y)
]i ∂ϕ(x, y)

∂x
∂ϕ(x, y)
∂y

dxdy − 3

and

Φ2 = 90
∞∑

i=0

∞∑
j=0

θi+ j
∫ 1

0

∫ 1

0
x2y2 [

ϕ(x, y)
]i+ j dxdy − 180

∞∑
i=0

θi
∫ 1

0

∫ 1

0
x2y2 [

ϕ(x, y)
]i dxdy + 10.

2.8. El Ktaibi et al. [16]’s copulas

We consider the particular case in Section 2.7 for ϕ(x, y) = f (x)g(y). For the copulas given by

C(x, y) =
xy

1 − θ f (x)g(y)
= xy

∞∑
i=0

θi [ f (x)g(y)
]i

for 0 < x < 1, 0 < y < 1, and suitable values of θ and f , g in suitable functions, we have

c(x, y) =
1

1 − θ f (x)g(y)
+

θ f (x)y[
1 − θ f (x)g(y)

]2

∂g(y)
∂y

+
θx[

1 − θ f (x)g(y)
]2

∂ f (x)
∂x
+

θxy[
1 − θ f (x)g(y)

]2

∂ f (x)
∂x

∂g(y)
∂y

+
2θ2xy f (x)g(y)[
1 − θ f (x)g(y)

]3

∂ f (x)
∂x

∂g(y)
∂y

=

∞∑
i=0

θi [ f (x)g(y)
]i
+ θy

∞∑
i=0

(i + 1)θi [ f (x)
]i+1 [

g(y)
]i ∂g(y)

∂y

+ θx
∞∑

i=0

(i + 1)θi [ f (x)
]i [g(y)

]i+1 ∂ f (x)
∂x

+ θxy
∞∑

i=0

(i + 1)θi [ f (x)
]i [g(y)

]i ∂ f (x)
∂x

∂g(y)
∂y

+ 2θ2xy
∞∑

i=0

(i + 1)(i + 2)θi [ f (x)g(y)
]i+1 ∂ f (x)

∂x
∂g(y)
∂y

,

β∗ =
θ f

(
1
2

)
g
(

1
2

)
1 − θ f

(
1
2

)
g
(

1
2

) ,

τ = 4
∞∑

i=0

∞∑
j=0

θi+ j
∫ 1

0

∫ 1

0
xy

[
f (x)g(y)

]i+ j dxdy
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+ 4θ
∞∑

i=0

∞∑
j=0

( j + 1)θi+ j
∫ 1

0

∫ 1

0
xy2 [

f (x)
]i+ j+1 [

g(y)
]i+ j ∂g(y)

∂y
dxdy

+ 4θ
∞∑

i=0

∞∑
j=0

( j + 1)θi+ j
∫ 1

0

∫ 1

0
x2y

[
f (x)

]i+ j [g(y)
]i+ j+1 ∂ f (x)

∂x
dxdy

+ 4θ
∞∑

i=0

∞∑
j=0

( j + 1)θi+ j
∫ 1

0

∫ 1

0
x2y2 [

f (x)
]i+ j [g(y)

]i+ j ∂ f (x)
∂x

∂g(y)
∂y

dxdy

+ 8θ2
∞∑

i=0

∞∑
j=0

( j + 1)( j + 2)θi+ j
∫ 1

0

∫ 1

0
x2y2 [

f (x)
] [

g(y)
]i+ j+1 ∂ f (x)

∂x
∂g(y)
∂y

dxdy − 1,

ρ = 12
∞∑

i=0

θi
∫ 1

0

∫ 1

0
xy

[
f (x)g(y)

]i dxdy + 12θ
∞∑

i=0

(i + 1)θi
∫ 1

0

∫ 1

0
xy2 [

f (x)
]i+1 [

g(y)
]i ∂g(y)

∂y
dxdy

+ 12θ
∞∑

i=0

(i + 1)θi
∫ 1

0

∫ 1

0
x2y

[
f (x)

]i [g(y)
]i+1 ∂ f (x)

∂x
dxdy

+ 12θ
∞∑

i=0

(i + 1)θi
∫ 1

0

∫ 1

0
x2y2 [

f (x)
]i [g(y)

]i ∂ f (x)
∂x

∂g(y)
∂y

dxdy

+ 24θ2
∞∑

i=0

(i + 1)(i + 2)θi
∫ 1

0

∫ 1

0
x2y2 [

f (x)
] [

g(y)
]i+1 ∂ f (x)

∂x
∂g(y)
∂y

dxdy − 3

and

Φ2 = 90
∞∑

i=0

∞∑
j=0

θi+ j
∫ 1

0

∫ 1

0
x2y2 [

f (x)g(y)
]i+ j dxdy − 180

∞∑
i=0

θi
∫ 1

0

∫ 1

0
x2y2 [

f (x)g(y)
]i dxdy + 10.

2.9. El Ktaibi et al. [16]’s copulas

We consider the particular case in Section 2.7 for ϕ(x, y) = f (x) f (y). For the copulas given by

C(x, y) =
xy

1 − θ f (x) f (y)
= xy

∞∑
i=0

θi [ f (x) f (y)
]i

for 0 < x < 1, 0 < y < 1, and suitable values of θ and f , g in suitable functions, we have

c(x, y) =
1

1 − θ f (x) f (y)
+

θ f (x)y[
1 − θ f (x) f (y)

]2

∂ f (y)
∂y

+
θx[

1 − θ f (x) f (y)
]2

∂ f (x)
∂x
+

θxy[
1 − θ f (x) f (y)

]2

∂ f (x)
∂x

∂ f (y)
∂y

+
2θ2xy f (x) f (y)[
1 − θ f (x) f (y)

]3

∂ f (x)
∂x

∂ f (y)
∂y

=

∞∑
i=0

θi [ f (x) f (y)
]i
+ θy

∞∑
i=0

(i + 1)θi [ f (x)
]i+1 [

f (y)
]i ∂ f (y)

∂y
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+ θx
∞∑

i=0

(i + 1)θi [ f (x)
]i [ f (y)

]i+1 ∂ f (x)
∂x

+ θxy
∞∑

i=0

(i + 1)θi [ f (x)
]i [ f (y)

]i ∂ f (x)
∂x

∂ f (y)
∂y

+ 2θ2xy
∞∑

i=0

(i + 1)(i + 2)θi [ f (x) f (y)
]i+1 ∂ f (x)

∂x
∂ f (y)
∂y

,

β∗ =
θ
[
f
(

1
2

)]2

1 − θ
[
f
(

1
2

)]2 ,

τ = 4
∞∑

i=0

∞∑
j=0

θi+ j
∫ 1

0

∫ 1

0
xy

[
f (x) f (y)

]i+ j dxdy

+ 4θ
∞∑

i=0

∞∑
j=0

( j + 1)θi+ j
∫ 1

0

∫ 1

0
xy2 [

f (x)
]i+ j+1 [

f (y)
]i+ j ∂ f (y)

∂y
dxdy

+ 4θ
∞∑

i=0

∞∑
j=0

( j + 1)θi+ j
∫ 1

0

∫ 1

0
x2y

[
f (x)

]i+ j [ f (y)
]i+ j+1 ∂ f (x)

∂x
dxdy

+ 4θ
∞∑

i=0

∞∑
j=0

( j + 1)θi+ j
∫ 1

0

∫ 1

0
x2y2 [

f (x)
]i+ j [ f (y)

]i+ j ∂ f (x)
∂x

∂ f (y)
∂y

dxdy

+ 8θ2
∞∑

i=0

∞∑
j=0

( j + 1)( j + 2)θi+ j
∫ 1

0

∫ 1

0
x2y2 [

f (x) f (y)
]i+ j+1 ∂ f (x)

∂x
∂ f (y)
∂y

dxdy − 1,

ρ = 12
∞∑

i=0

θi
∫ 1

0

∫ 1

0
xy

[
f (x) f (y)

]i dxdy + 12θ
∞∑

i=0

(i + 1)θi
∫ 1

0

∫ 1

0
xy2 [

f (x)
]i+1 [

f (y)
]i ∂ f (y)

∂y
dxdy

+ 12θ
∞∑

i=0

(i + 1)θi
∫ 1

0

∫ 1

0
x2y

[
f (x)

]i [ f (y)
]i+1 ∂ f (x)

∂x
dxdy

+ 12θ
∞∑

i=0

(i + 1)θi
∫ 1

0

∫ 1

0
x2y2 [

f (x)
]i [ f (y)

]i ∂ f (x)
∂x

∂ f (y)
∂y

dxdy

+ 24θ2
∞∑

i=0

(i + 1)(i + 2)θi
∫ 1

0

∫ 1

0
x2y2 [

f (x)
] [

f (y)
]i+1 ∂ f (x)

∂x
∂ f (y)
∂y

dxdy − 3

and

Φ2 = 90
∞∑

i=0

∞∑
j=0

θi+ j
∫ 1

0

∫ 1

0
x2y2 [

f (x) f (y)
]i+ j dxdy − 180

∞∑
i=0

θi
∫ 1

0

∫ 1

0
x2y2 [

f (x) f (y)
]i dxdy + 10.

AIMS Mathematics Volume 10, Issue 9, 22336–22381.



22352

2.10. FGM type copulas [17, 18, 19, 24]

FGM type copulas are a class of bivariate copulas that provide a simple way to model dependence
between two random variables. FGM copulas are limited in capturing strong dependence but are valued
for their simplicity, interpretability, and suitability in modeling relationships with low to moderate
dependence. They are primarily used in theoretical studies and cases where simplicity outweighs the
need for flexibility in capturing tail dependence. For FGM type copulas given by

C(x, y) = xy
[
1 + θa(x, y)

]p
= xy

∞∑
i=0

(
p
i

)
θi [a(x, y)

]i

for 0 < x < 1, 0 < y < 1, p > 0, −1 < θ < 1 and a(x, y) in a suitable function, we have

c(x, y) =
[
1 + θa(x, y)

]p
+ θpx

[
1 + θa(x, y)

]p−1 ∂a(x, y)
∂x

+ θpy
[
1 + θa(x, y)

]p−1 ∂a(x, y)
∂y

+ θ2 p(p − 1)xy
[
1 + θa(x, y)

]p−2 ∂a(x, y)
∂x

∂a(x, y)
∂y

+ θpxy
[
1 + θa(x, y)

]p−1 ∂
2a(x, y)
∂x∂y

=

∞∑
i=0

(
p
i

)
θi [a(x, y)

]i
+ θpx

∞∑
i=0

(
p − 1

i

)
θi [a(x, y)

]i ∂a(x, y)
∂x

+ θpy
∞∑

i=0

(
p − 1

i

)
θi [a(x, y)

]i ∂a(x, y)
∂y

+ θ2 p(p − 1)xy
∞∑

i=0

(
p − 2

i

)
θi [a(x, y)

]i ∂a(x, y)
∂x

∂a(x, y)
∂y

+ θpxy
∞∑

i=0

(
p − 1

i

)
θi [a(x, y)

]i ∂
2a(x, y)
∂x∂y

,

β∗ =

[
1 + θa

(
1
2
,

1
2

)]p

− 1,

τ = 4
∞∑

i=0

∞∑
j=0

(
p
i

)(
p
j

)
θi+ j

∫ 1

0

∫ 1

0
xy

[
a(x, y)

]i+ j dxdy

+ 4θp
∞∑

i=0

∞∑
j=0

(
p
i

)(
p − 1

j

)
θi+ j

∫ 1

0

∫ 1

0
x2y

[
a(x, y)

]i+ j ∂a(x, y)
∂x

dxdy

+ 4θp
∞∑

i=0

∞∑
j=0

(
p
i

)(
p − 1

j

)
θi+ j

∫ 1

0

∫ 1

0
xy2 [

a(x, y)
]i+ j ∂a(x, y)

∂y
dxdy

+ 4θ2 p(p − 1)
∞∑

i=0

∞∑
j=0

(
p
i

)(
p − 2

j

)
θi+ j

∫ 1

0

∫ 1

0
x2y2 [

a(x, y)
]i+ j ∂a(x, y)

∂x
∂a(x, y)
∂y

dxdy
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+ 4θp
∞∑

i=0

∞∑
j=0

(
p
i

)(
p − 1

j

)
θi+ j

∫ 1

0

∫ 1

0
x2y2 [

a(x, y)
]i+ j ∂

2a(x, y)
∂x∂y

dxdy − 1,

ρ = 12
∞∑

i=0

(
p
i

)
θi

∫ 1

0

∫ 1

0
xy

[
a(x, y)

]i dxdy

+ 12θp
∞∑

i=0

(
p − 1

i

)
θi

∫ 1

0

∫ 1

0
x2y

[
a(x, y)

]i ∂a(x, y)
∂x

dxdy

+ 12θp
∞∑

i=0

(
p − 1

i

)
θi

∫ 1

0

∫ 1

0
xy2 [

a(x, y)
]i ∂a(x, y)

∂y
dxdy

+ 12θ2 p(p − 1)
∞∑

i=0

(
p − 2

i

)
θi

∫ 1

0

∫ 1

0
x2y2 [

a(x, y)
]i ∂a(x, y)

∂x
∂a(x, y)
∂y

dxdy

+ 12θp
∞∑

i=0

(
p − 1

i

)
θi

∫ 1

0

∫ 1

0
x2y2 [

a(x, y)
]i ∂

2a(x, y)
∂x∂y

dxdy − 3,

and

Φ2 = 90
∞∑

i=0

∞∑
j=0

(
p
i

)(
p
j

)
θi+ j

∫ 1

0

∫ 1

0
x2y2 [

a(x, y)
]i+ j dxdy

− 180
∞∑

i=0

(
p
i

)
θi

∫ 1

0

∫ 1

0
x2y2 [

a(x, y)
]i dxdy + 10.

If p > 0 is an integer then

c(x, y) =
p∑

i=0

(
p
i

)
θi [a(x, y)

]i
+ θpx

p−1∑
i=0

(
p − 1

i

)
θi [a(x, y)

]i ∂a(x, y)
∂x

+ θpy
p−1∑
i=0

(
p − 1

i

)
θi [a(x, y)

]i ∂a(x, y)
∂y

+ θ2 p(p − 1)xy
p−2∑
i=0

(
p − 2

i

)
θi [a(x, y)

]i ∂a(x, y)
∂x

∂a(x, y)
∂y

+ θpxy
p−1∑
i=0

(
p − 1

i

)
θi [a(x, y)

]i ∂
2a(x, y)
∂x∂y

,

τ = 4
p∑

i=0

p∑
j=0

(
p
i

)(
p
j

)
θi+ j

∫ 1

0

∫ 1

0
xy

[
a(x, y)

]i+ j dxdy

+ 4θp
p∑

i=0

p−1∑
j=0

(
p
i

)(
p − 1

j

)
θi+ j

∫ 1

0

∫ 1

0
x2y

[
a(x, y)

]i+ j ∂a(x, y)
∂x

dxdy
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+ 4θp
p∑

i=0

p−1∑
j=0

(
p
i

)(
p − 1

j

)
θi+ j

∫ 1

0

∫ 1

0
xy2 [

a(x, y)
]i+ j ∂a(x, y)

∂y
dxdy

+ 4θ2 p(p − 1)
p∑

i=0

p−2∑
j=0

(
p
i

)(
p − 2

j

)
θi+ j

∫ 1

0

∫ 1

0
x2y2 [

a(x, y)
]i+ j ∂a(x, y)

∂x
∂a(x, y)
∂y

dxdy

+ 4θp
p∑

i=0

p−1∑
j=0

(
p
i

)(
p − 1

j

)
θi+ j

∫ 1

0

∫ 1

0
x2y2 [

a(x, y)
]i+ j ∂

2a(x, y)
∂x∂y

dxdy − 1,

ρ = 12
p∑

i=0

(
p
i

)
θi

∫ 1

0

∫ 1

0
xy

[
a(x, y)

]i dxdy

+ 12θp
p−1∑
i=0

(
p − 1

i

)
θi

∫ 1

0

∫ 1

0
x2y

[
a(x, y)

]i ∂a(x, y)
∂x

dxdy

+ 12θp
p−1∑
i=0

(
p − 1

i

)
θi

∫ 1

0

∫ 1

0
xy2 [

a(x, y)
]i ∂a(x, y)

∂y
dxdy

+ 12θ2 p(p − 1)
p−2∑
i=0

(
p − 2

i

)
θi

∫ 1

0

∫ 1

0
x2y2 [

a(x, y)
]i ∂a(x, y)

∂x
∂a(x, y)
∂y

dxdy

+ 12θp
p−1∑
i=0

(
p − 1

i

)
θi

∫ 1

0

∫ 1

0
x2y2 [

a(x, y)
]i ∂

2a(x, y)
∂x∂y

dxdy − 3,

and

Φ2 = 90
p∑

i=0

p∑
j=0

(
p
i

)(
p
j

)
θi+ j

∫ 1

0

∫ 1

0
x2y2 [

a(x, y)
]i+ j dxdy

− 180
p∑

i=0

(
p
i

)
θi

∫ 1

0

∫ 1

0
x2y2 [

a(x, y)
]i dxdy + 10.

2.11. FGM type copulas [17, 18, 19, 24]

We consider the particular case in Section 2.10 for a(x, y) = ϕ(x)ψ(y). For the copulas given by

C(x, y) = xy
[
1 + θϕ(x)ψ(y)

]p

for 0 < x < 1, 0 < y < 1, p > 0, −1 < θ < 1 and ϕ(x), ψ(y) in suitable functions, we have

c(x, y) =
[
1 + θϕ(x)ψ(y)

]p
+ pθϕ(x)y

[
1 + θϕ(x)ψ(y)

]p−1 ∂ψ(y)
∂y

+ pθxψ(y)
[
1 + θϕ(x)ψ(y)

]p−1 ∂ϕ(x)
∂x
+ pθxy

[
1 + θϕ(x)ψ(y)

]p−1 ∂ϕ(x)
∂x

∂ψ(y)
∂y

+ p(p − 1)θ2xyϕ(x)ψ(y)
[
1 + θϕ(x)ψ(y)

]p−2 ∂ϕ(x)
∂x

∂ψ(y)
∂y

AIMS Mathematics Volume 10, Issue 9, 22336–22381.



22355

=

∞∑
i=0

(
p
i

)
θi [ϕ(x)

]i [ψ(y)
]i
+ pθy

∞∑
i=0

(
p − 1

i

)
θi [ϕ(x)

]i+1 [
ψ(y)

]i ∂ψ(y)
∂y

+ pθx
∞∑

i=0

(
p − 1

i

)
θi [ϕ(x)

]i [ψ(y)
]i+1 ∂ϕ(x)

∂x

+ pθxy
∞∑

i=0

(
p − 1

i

)
θi [ϕ(x)

]i [ψ(y)
]i ∂ϕ(x)

∂x
∂ψ(y)
∂y

+ p(p − 1)θ2xy
∞∑

i=0

(
p − 2

i

)
θi [ϕ(x)

]i+1 [
ψ(y)

]i+1 ∂ϕ(x)
∂x

∂ψ(y)
∂y

,

β∗ =

[
1 + θϕ

(
1
2

)
ψ

(
1
2

)]p

− 1,

τ = 4
∞∑

i=0

∞∑
j=0

(
p
i

)(
p
j

)
θi+ jI1,i+ j,ϕI1,i+ j,ψ

+ 4pθ
∞∑

i=0

∞∑
j=0

(
p
i

)(
p − 1

j

)
θi+ jI1,i+ j+1,ϕJ2,i+ j,ψ

+ 4pθ
∞∑

i=0

∞∑
j=0

(
p
i

)(
p − 1

j

)
θi+ jJ2,i+ j,ϕI1,i+ j+1,ψ

+ 4pθ
∞∑

i=0

∞∑
j=0

(
p
i

)(
p − 1

j

)
θi+ jJ2,i+ j,ϕJ2,i+ j,ψ

+ 4p(p − 1)θ2
∞∑

i=0

∞∑
j=0

(
p
i

)(
p − 2

j

)
θi+ jJ2,i+ j+1,ϕJ2,i+ j+1,ψ − 1,

ρ = 12
∞∑

i=0

(
p
i

)
θiI1,i,ϕI1,i,ψ + 12pθ

∞∑
i=0

(
p − 1

i

)
θiI1,i+1,ϕJ2,i,ψ

+ 12pθ
∞∑

i=0

(
p − 1

i

)
θiJ2,i,ϕI1,i+1,ψ

+ 12pθ
∞∑

i=0

(
p − 1

i

)
θiJ2,i,ϕJ2,i,ψ + 12p(p − 1)θ2

∞∑
i=0

(
p − 2

i

)
θiJ2,i+1,ϕJ2,i+1,ψ − 3

and

Φ2 = 90
∞∑

i=0

∞∑
j=0

(
p
i

)(
p
j

)
θi+ jI2,i+ j,ϕI2,i+ j,ψ − 180

∞∑
i=0

(
p
i

)
θiI2,i+ j,ϕI2,i+ j,ψ + 10,

where

Im,n,φ =

∫ 1

0
xm [

φ(x)
]n dx
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and

Jm,n,φ =

∫ 1

0
xm [

φ(x)
]n dφ(x)

dx
dx.

If p > 0 is an integer then

c(x, y) =
p∑

i=0

(
p
i

)
θi [ϕ(x)

]i [ψ(y)
]i
+ pθy

p−1∑
i=0

(
p − 1

i

)
θi [ϕ(x)

]i+1 [
ψ(y)

]i ∂ψ(y)
∂y

+ pθx
p−1∑
i=0

(
p − 1

i

)
θi [ϕ(x)

]i [ψ(y)
]i+1 ∂ϕ(x)

∂x

+ pθxy
p−1∑
i=0

(
p − 1

i

)
θi [ϕ(x)

]i [ψ(y)
]i ∂ϕ(x)

∂x
∂ψ(y)
∂y

+ p(p − 1)θ2xy
p−2∑
i=0

(
p − 2

i

)
θi [ϕ(x)

]i+1 [
ψ(y)

]i+1 ∂ϕ(x)
∂x

∂ψ(y)
∂y

,

τ = 4
p∑

i=0

p∑
j=0

(
p
i

)(
p
j

)
θi+ jI1,i+ j,ϕI1,i+ j,ψ

+ 4pθ
p∑

i=0

p−1∑
j=0

(
p
i

)(
p − 1

j

)
θi+ jI1,i+ j+1,ϕJ2,i+ j,ψ

+ 4pθ
p∑

i=0

p−1∑
j=0

(
p
i

)(
p − 1

j

)
θi+ jJ2,i+ j,ϕI1,i+ j+1,ψ

+ 4pθ
p∑

i=0

p−1∑
j=0

(
p
i

)(
p − 1

j

)
θi+ jJ2,i+ j,ϕJ2,i+ j,ψ

+ 4p(p − 1)θ2
p∑

i=0

p−2∑
j=0

(
p
i

)(
p − 2

j

)
θi+ jJ2,i+ j+1,ϕJ2,i+ j+1,ψ − 1,

ρ = 12
p∑

i=0

(
p
i

)
θiI1,i,ϕI1,i,ψ + 12pθ

p−1∑
i=0

(
p − 1

i

)
θiI1,i+1,ϕJ2,i,ψ

+ 12pθ
p−1∑
i=0

(
p − 1

i

)
θiJ2,i,ϕI1,i+1,ψ

+ 12pθ
p−1∑
i=0

(
p − 1

i

)
θiJ2,i,ϕJ2,i,ψ + 12p(p − 1)θ2

p−2∑
i=0

(
p − 2

i

)
θiJ2,i+1,ϕJ2,i+1,ψ − 3

and

Φ2 = 90
p∑

i=0

p∑
j=0

(
p
i

)(
p
j

)
θi+ jI2,i+ j,ϕI2,i+ j,ψ − 180

p∑
i=0

(
p
i

)
θiI2,i+ j,ϕI2,i+ j,ψ + 10,
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2.12. FGM type copulas [17, 18, 19, 24]

We consider the particular case in Section 2.10 for a(x, y) = ψ(x)ψ(y). For the copulas given by

C(x, y) = xy
[
1 + θψ(x)ψ(y)

]p

for 0 < x < 1, 0 < y < 1, p > 0, −1 < θ < 1 and ψ in a suitable function, we have

c(x, y) =
[
1 + θψ(x)ψ(y)

]p
+ pθψ(x)y

[
1 + θψ(x)ψ(y)

]p−1 ∂ψ(y)
∂y

+ pθxψ(y)
[
1 + θψ(x)ψ(y)

]p−1 ∂ψ(x)
∂x
+ pθxy

[
1 + θψ(x)ψ(y)

]p−1 ∂ψ(x)
∂x

∂ψ(y)
∂y

+ p(p − 1)θ2xyψ(x)ψ(y)
[
1 + θψ(x)ψ(y)

]p−2 ∂ψ(x)
∂x

∂ψ(y)
∂y

=

∞∑
i=0

(
p
i

)
θi [ψ(x)

]i [ψ(y)
]i
+ pθy

∞∑
i=0

(
p − 1

i

)
θi [ψ(x)

]i+1 [
ψ(y)

]i ∂ψ(y)
∂y

+ pθx
∞∑

i=0

(
p − 1

i

)
θi [ψ(x)

]i [ψ(y)
]i+1 ∂ψ(x)

∂x

+ pθxy
∞∑

i=0

(
p − 1

i

)
θi [ψ(x)

]i [ψ(y)
]i ∂ψ(x)

∂x
∂ψ(y)
∂y

+ p(p − 1)θ2xy
∞∑

i=0

(
p − 2

i

)
θi [ψ(x)

]i+1 [
ψ(y)

]i+1 ∂ψ(x)
∂x

∂ψ(y)
∂y

,

β∗ =

[
1 + θψ2

(
1
2

)]p

− 1,

τ = 4
∞∑

i=0

∞∑
j=0

(
p
i

)(
p
j

)
θi+ jI2

1,i+ j,ψ + 8pθ
∞∑

i=0

∞∑
j=0

(
p
i

)(
p − 1

j

)
θi+ jI1,i+ j+1,ψJ2,i+ j,ψ

+ 4pθ
∞∑

i=0

∞∑
j=0

(
p
i

)(
p − 1

j

)
θi+ jJ2

2,i+ j,ψ

+ 4p(p − 1)θ2
∞∑

i=0

∞∑
j=0

(
p
i

)(
p − 2

j

)
θi+ jJ2

2,i+ j+1,ψ − 1,

ρ = 12
∞∑

i=0

(
p
i

)
θiI2

1,i,ψ + 24pθ
∞∑

i=0

(
p − 1

i

)
θiI1,i+1,ψJ2,i,ψ

+ 12pθ
∞∑

i=0

(
p − 1

i

)
θiJ2

2,i,ψ + 12p(p − 1)θ2
∞∑

i=0

(
p − 2

i

)
θiJ2

2,i+1,ψ − 3
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and

Φ2 = 90
∞∑

i=0

∞∑
j=0

(
p
i

)(
p
j

)
θi+ jI2

2,i+ j,ψ − 180
∞∑

i=0

(
p
i

)
θiI2

2,i+ j,ψ + 10.

If p > 0 is an integer then

c(x, y) =
p∑

i=0

(
p
i

)
θi [ψ(x)

]i [ψ(y)
]i
+ pθy

p−1∑
i=0

(
p − 1

i

)
θi [ψ(x)

]i+1 [
ψ(y)

]i ∂ψ(y)
∂y

+ pθx
p−1∑
i=0

(
p − 1

i

)
θi [ψ(x)

]i [ψ(y)
]i+1 ∂ψ(x)

∂x

+ pθxy
p−1∑
i=0

(
p − 1

i

)
θi [ψ(x)

]i [ψ(y)
]i ∂ψ(x)

∂x
∂ψ(y)
∂y

+ p(p − 1)θ2xy
p−2∑
i=0

(
p − 2

i

)
θi [ψ(x)

]i+1 [
ψ(y)

]i+1 ∂ψ(x)
∂x

∂ψ(y)
∂y

,

τ = 4
p∑

i=0

p∑
j=0

(
p
i

)(
p
j

)
θi+ jI2

1,i+ j,ψ + 8pθ
p∑

i=0

p−1∑
j=0

(
p
i

)(
p − 1

j

)
θi+ jI1,i+ j+1,ψJ2,i+ j,ψ

+ 4pθ
p∑

i=0

p−1∑
j=0

(
p
i

)(
p − 1

j

)
θi+ jJ2

2,i+ j,ψ

+ 4p(p − 1)θ2
p∑

i=0

p−2∑
j=0

(
p
i

)(
p − 2

j

)
θi+ jJ2

2,i+ j+1,ψ − 1,

ρ = 12
p∑

i=0

(
p
i

)
θiI2

1,i,ψ + 24pθ
p−1∑
i=0

(
p − 1

i

)
θiI1,i+1,ψJ2,i,ψ

+ 12pθ
p−1∑
i=0

(
p − 1

i

)
θiJ2

2,i,ψ + 12p(p − 1)θ2
p−2∑
i=0

(
p − 2

i

)
θiJ2

2,i+1,ψ − 3

and

Φ2 = 90
p∑

i=0

p∑
j=0

(
p
i

)(
p
j

)
θi+ jI2

2,i+ j,ψ − 180
p∑

i=0

(
p
i

)
θiI2

2,i+ j,ψ + 10.

2.13. Chesneau [6]’s copula

For the copulas given by

C(x, y) = sin(πx) sin(πy)ϕ(x + y)

AIMS Mathematics Volume 10, Issue 9, 22336–22381.



22359

for 0 < x < 1 and 0 < y < 1, we have

c(x, y) = π2 cos(πx) cos(πy)ϕ(x + y) + π cos(πx) sin(πy)ϕ
′

(x + y)

+ π sin(πx) cos(πy)ϕ
′

(x + y) + sin(πx) sin(πy)ϕ
′′

(x + y),

β∗ = 4ϕ (1) − 1,

τ = 4π2
∫ 1

0

∫ 1

0
sin(πx) sin(πy) cos(πx) cos(πy)

[
ϕ(x + y)

]2 dxdy

+ 4π
∫ 1

0

∫ 1

0
sin(πx) cos(πx) sin2(πy)ϕ(x + y)ϕ

′

(x + y)dxdy

+ 4π
∫ 1

0

∫ 1

0
sin2(πx) sin(πy) cos(πy)ϕ(x + y)ϕ

′

(x + y)dxdy

+ 4
∫ 1

0

∫ 1

0
sin2(πx) sin2(πy)ϕ(x + y)ϕ

′′

(x + y)dxdy − 1,

ρ = 12π2
∫ 1

0

∫ 1

0
xy cos(πx) cos(πy)ϕ(x + y)dxdy

+ 12π
∫ 1

0

∫ 1

0
xy cos(πx) sin(πy)ϕ

′

(x + y)dxdy

+ 12π
∫ 1

0

∫ 1

0
xy sin(πx) cos(πy)ϕ

′

(x + y)dxdy

+ 12
∫ 1

0

∫ 1

0
xy sin(πx) sin(πy)ϕ

′′

(x + y)dxdy − 3

and

Φ2 = 90
∫ 1

0

∫ 1

0
sin2(πx) sin2(πy)

[
ϕ(x, y)

]2 dxdy − 180
∫ 1

0

∫ 1

0
xy sin(πx) sin(πy)ϕ(x, y)dxdy + 10.

2.14. Chesneau [7, 8]’s copula

For the copulas given by

C(x, y) = xyyxϕ(x, y)

for 0 < x < 1, 0 < y < 1 and ϕ(x, y) in a suitable function, we have

c(x, y) = xy−1y1+x log xϕ(x, y) + (1 + x)xy−1yxϕ(x, y) + xy−1y1+x∂ϕ(x, y)
∂y

+ xyyx log x log yϕ(x, y) + xy+1yx−1 log yϕ(x, y) + xyyx−1ϕ(x, y)

+ xyyx log y
∂ϕ(x, y)
∂y

+ xyyx log x
∂ϕ(x, y)
∂x

+ xy+1yx−1∂ϕ(x, y)
∂x
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+ xyyx∂
2ϕ(x, y)
∂x∂y

,

β∗ = 2ϕ
(
1
2
,

1
2

)
− 1,

τ = 4
∫ 1

0

∫ 1

0
x2y−1y1+2x log x

[
ϕ(x, y)

]2 dxdy + 4
∫ 1

0

∫ 1

0
(1 + x)x2y−1y2x [ϕ(x, y)

]2 dxdy

+ 4
∫ 1

0

∫ 1

0
x2y−1y1+2xϕ(x, y)

∂ϕ(x, y)
∂y

dxdy + 4
∫ 1

0

∫ 1

0
x2yy2x log x log y

[
ϕ(x, y)

]2 dxdy

+ 4
∫ 1

0

∫ 1

0
x2y+1y2x−1 log y

[
ϕ(x, y)

]2 dxdy + 4
∫ 1

0

∫ 1

0
x2yy2x−1 [

ϕ(x, y)
]2 dxdy

+ 4
∫ 1

0

∫ 1

0
x2yy2x log yϕ(x, y)

∂ϕ(x, y)
∂y

dxdy + 4
∫ 1

0

∫ 1

0
x2yy2x log xϕ(x, y)

∂ϕ(x, y)
∂x

dxdy

+ 4
∫ 1

0

∫ 1

0
x2y+1y2x−1ϕ(x, y)

∂ϕ(x, y)
∂x

dxdy + 4
∫ 1

0

∫ 1

0
x2yy2xϕ(x, y)

∂2ϕ(x, y)
∂x∂y

dxdy − 1,

ρ = 12
∫ 1

0

∫ 1

0
xyy2+x log xϕ(x, y)dxdy + 12

∫ 1

0

∫ 1

0
(1 + x)xyyx+1ϕ(x, y)dxdy

+ 12
∫ 1

0

∫ 1

0
xyy2+x∂ϕ(x, y)

∂y
dxdy + 12

∫ 1

0

∫ 1

0
xy+1yx+1 log x log yϕ(x, y)dxdy

+ 12
∫ 1

0

∫ 1

0
xy+2yx log yϕ(x, y)dxdy + 12

∫ 1

0

∫ 1

0
xy+1yxϕ(x, y)dxdy

+ 12
∫ 1

0

∫ 1

0
xy+1yx+1 log y

∂ϕ(x, y)
∂y

dxdy + 12
∫ 1

0

∫ 1

0
xy+1yx+1 log x

∂ϕ(x, y)
∂x

dxdy

+ 12
∫ 1

0

∫ 1

0
xy+2yx∂ϕ(x, y)

∂x
dxdy + xy+1yx+1∂

2ϕ(x, y)
∂x∂y

dxdy − 3

and

Φ2 = 90
∫ 1

0

∫ 1

0
x2yy2x [ϕ(x, y)

]2 dxdy − 180
∫ 1

0

∫ 1

0
xy+1yx+1ϕ(x, y)dxdy + 10.

2.15. Linear combination of copulas

For the copulas given by

C(x, y) =
n∑

i=1

wiCi(x, y)

for 0 < x < 1 and 0 < y < 1, where Ci(x, y), i = 1, 2, . . . , n are valid copulas and wi, i = 1, 2, . . . , n are
non-negative weights summing to 1, we have

c(x, y) =
n∑

i=1

wici(x, y),
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β∗ = 4
n∑

i=1

wiCi

(
1
2
,

1
2

)
− 1,

τ = 4
n∑

i=1

n∑
j=1

wiw j

∫ 1

0

∫ 1

0
Ci(x, y)dC j(x, y) − 1,

ρ = 12
n∑

i=1

wi

∫ 1

0

∫ 1

0
xydci(x, y) − 3

and

Φ2 = 90
n∑

i=1

n∑
j=1

wiw j

∫ 1

0

∫ 1

0
Ci(x, y)C j(x, y)dxdy − 180

n∑
i=1

wi

∫ 1

0

∫ 1

0
xyCi(x, y)dxdy + 10.

2.16. Power combination of copulas

For the copulas given by

C(x, y) =
n∏

i=1

[
Ci(x, y)

]wi

for 0 < x < 1 and 0 < y < 1, where Ci(x, y), i = 1, 2, . . . , n are valid copulas and wi, i = 1, 2, . . . , n are
non-negative, we have

c(x, y) =
n∑

i=1

wi (wi − 1)
[
Ci(x, y)

]wi−1 ∂Ci(x, y)
∂x

∂Ci(x, y)
∂y

n∏
j=1, j,i

[
C j(x, y)

]w j

+

n∑
i=1

wi
[
Ci(x, y)

]wi−1 ci(x, y)
n∏

j=1, j,i

[
C j(x, y)

]w j

+

n∑
i=1

wi
[
Ci(x, y)

]wi−2 ∂Ci(x, y)
∂x

n∑
j=1, j,i

w j

[
C j(x, y)

]w j−1 ∂C j(x, y)
∂y

n∏
k=1,k,i, j

[
Ck(x, y)

]wk ,

β∗ = 4
n∏

i=1

[
Ci

(
1
2
,

1
2

)]wi

− 1,

τ = 4
n∑

i=1

wi (wi − 1)
n∏

j=1, j,i

∫ 1

0

∫ 1

0

[
Ci(x, y)

]wi−1
[
C j(x, y)

]w j
n∏
ℓ=1

[
Cℓ(x, y)

]wℓ ∂Ci(x, y)
∂x

∂Ci(x, y)
∂y

dxdy

+ 4
n∑

i=1

wi

n∏
j=1, j,i

∫ 1

0

∫ 1

0

[
Ci(x, y)

]wi−1
[
C j(x, y)

]w j
n∏
ℓ=1

[
Cℓ(x, y)

]wℓ ci(x, y)dxdy

+ 4
n∑

i=1

wi

n∑
j=1, j,i

w j

n∏
k=1,k,i, j

∫ 1

0

∫ 1

0

[
Ci(x, y)

]wi−2
[
C j(x, y)

]w j−1 [
Ck(x, y)

]wk

n∏
ℓ=1

[
Cℓ(x, y)

]wℓ ∂Ci(x, y)
∂x

∂C j(x, y)
∂y

dxdy − 1,

AIMS Mathematics Volume 10, Issue 9, 22336–22381.



22362

τ = 12
n∑

i=1

wi (wi − 1)
n∏

j=1, j,i

∫ 1

0

∫ 1

0
xy

[
Ci(x, y)

]wi−1
[
C j(x, y)

]w j ∂Ci(x, y)
∂x

∂Ci(x, y)
∂y

dxdy

+ 12
n∑

i=1

wi

n∏
j=1, j,i

∫ 1

0

∫ 1

0
xy

[
Ci(x, y)

]wi−1
[
C j(x, y)

]w j
ci(x, y)dxdy

+ 12
n∑

i=1

wi

n∑
j=1, j,i

w j

n∏
k=1,k,i, j

∫ 1

0

∫ 1

0
xy

[
Ci(x, y)

]wi−2
[
C j(x, y)

]w j−1 [
Ck(x, y)

]wk
∂Ci(x, y)
∂x

∂C j(x, y)
∂y

dxdy − 3

and

Φ2 = 90
∫ 1

0

∫ 1

0

n∏
i=1

n∏
j=1

[
Ci(x, y)

]wi
[
C j(x, y)

]w j
dxdy − 180

∫ 1

0

∫ 1

0
xy

n∏
i=1

[
Ci(x, y)

]wi dxdy + 10.

2.17. Durante [13]’s copulas

For the copulas given by

C(x, y) = A
(
xα, yβ

)
B

(
x1−α, y1−β

)
for 0 < x < 1, 0 < y < 1, 0 < α < 1 and 0 < β < 1, where A and B are valid copulas, we have

c(x, y) = αβxα−1yβ−1a
(
xα, yβ

)
B

(
x1−α, y1−β

)
+ α(1 − β)xα−1y−β

∂A
(
xα, yβ

)
∂xα

∂B
(
x1−α, y1−β

)
∂y1−β

+ (1 − α)βx−βyβ−1
∂A

(
xα, yβ

)
∂yβ

∂B
(
x1−α, y1−β

)
∂x1−α

+ (1 − α)(1 − β)x−αy−βA
(
xα, yβ

)
b
(
x1−α, y1−β

)
,

β∗ = 4A
(
2−α, 2−β

)
B

(
2α−1, 2β−1

)
− 1,

ρ = 4αβ
∫ 1

0

∫ 1

0
xα−1yβ−1a

(
xα, yβ

)
A

(
xα, yβ

) [
B

(
x1−α, y1−β

)]2
dxdy

+ 4α(1 − β)
∫ 1

0

∫ 1

0
xα−1y−β

∂A
(
xα, yβ

)
∂xα

∂B
(
x1−α, y1−β

)
∂y1−β A

(
xα, yβ

)
B

(
x1−β, y1−β

)
dxdy

+ 4(1 − α)β
∫ 1

0

∫ 1

0
x−αyβ−1

∂A
(
xα, yβ

)
∂yβ

∂B
(
x1−α, y1−β

)
∂x1−α A

(
xα, yβ

)
B

(
x1−α, y1−β

)
dxdy

+ 4(1 − α)(1 − β)
∫ 1

0

∫ 1

0
x−αy−β

[
A

(
xα, yβ

)]2
b
(
x1−α, y1−β

)
B

(
x1−α, y1−β

)
dxdy − 1,

τ = 12αβ
∫ 1

0

∫ 1

0
xαyβa

(
xα, yβ

)
B

(
x1−α, y1−β

)
dxdy
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+ 12α(1 − β)
∫ 1

0

∫ 1

0
xαy1−β

∂A
(
xα, yβ

)
∂xα

∂B
(
x1−α, y1−β

)
∂y1−β dxdy

+ 12(1 − α)β
∫ 1

0

∫ 1

0
x1−αyβ

∂A
(
xα, yβ

)
∂yβ

∂B
(
x1−α, y1−β

)
∂x1−α dxdy

+ 12(1 − α)(1 − β)
∫ 1

0

∫ 1

0
x1−αy1−βA

(
xα, yβ

)
b
(
x1−α, y1−β

)
dxdy − 3

and

Φ2 = 90
∫ 1

0

∫ 1

0

[
A

(
xα, yβ

)]2 [
B

(
x1−α, y1−β

)]2
dxdy

− 180
∫ 1

0

∫ 1

0
xyA

(
xα, yβ

)
B

(
x1−α, y1−β

)
dxdy + 10.

2.18. Durante et al. [15]’s copulas

For the copulas given by

C(x, y) = x f
(
1
x

f −1(y)
)

for 0 < x < 1, 0 < y < 1 and f : [0,∞]→ [0, 1] as a surjective, monotonic function, we have

c(x, y) = −
1
x2 f

′′

(
1
x

f −1(y)
)

d f −1(y)
dy

f −1(y),

β∗ = 2 f
(
2 f −1

(
1
2

))
− 1,

τ = −4
∫ 1

0

∫ 1

0

1
x

f
(
1
x

f −1(y)
)

f
′′

(
1
x

f −1(y)
)

d f −1(y)
dy

f −1(y)dxdy − 1,

ρ = −12
∫ 1

0

∫ 1

0

y
x

f
′′

(
1
x

f −1(y)
)

d f −1(y)
dy

f −1(y)dxdy − 3

and

Φ2 = 90
∫ 1

0

∫ 1

0
x2

[
f
(
1
x

f −1(y)
)]2

dxdy − 180
∫ 1

0

∫ 1

0
x2y f

(
1
x

f −1(y)
)

dxdy + 10.

2.19. Kumar [23]’s perturbed copulas

For the copulas given by

C(x, y) = xy + a
[
x − B(x, y)

] [
y − B(x, y)

]
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for 0 < x < 1, 0 < y < 1 and 0 ≤ a ≤ 1, where B is a valid copula, we have

c(x, y) = 1 + a − a
∂B(x, y)
∂x

− a
∂B(x, y)
∂y

+ 2a
∂B(x, y)
∂x

∂B(x, y)
∂y

+ 2ab(x, y)B(x, y) − a (x + y) b(x, y),

β∗ = a
[
1 − 2B

(
1
2
,

1
2

)]2

,

τ = (1 + a)2 − 4a(1 + a)
∫ 1

0

∫ 1

0
xy
∂B(x, y)
∂x

dxdy

− 4a(1 + a)
∫ 1

0

∫ 1

0
xy
∂B(x, y)
∂y

dxdy + 8a(1 + a)
∫ 1

0

∫ 1

0
xy
∂B(x, y)
∂x

∂B(x, y)
∂y

dxdy

+ 8a(1 + a)
∫ 1

0

∫ 1

0
xyb(x, y)B(x, y)dxdy − 4a(1 + a)

∫ 1

0

∫ 1

0
xy (x + y) b(x, y)dxdy

+ 4a(1 + a)
∫ 1

0

∫ 1

0
(x + y)B(x, y)dxdy − 4a2

∫ 1

0

∫ 1

0
(x + y)B(x, y)

∂B(x, y)
∂x

dxdy

− 4a2
∫ 1

0

∫ 1

0
(x + y)B(x, y)

∂B(x, y)
∂y

dxdy + 8a2
∫ 1

0

∫ 1

0
(x + y)B(x, y)

∂B(x, y)
∂x

∂B(x, y)
∂y

dxdy

+ 8a2
∫ 1

0

∫ 1

0
(x + y)b(x, y)B2(x, y)dxdy − 4a2

∫ 1

0

∫ 1

0
(x + y)2 b(x, y)B(x, y)dxdy

4a(1 + a)
∫ 1

0

∫ 1

0
B2(x, y)dxdy − 4a2

∫ 1

0

∫ 1

0
B2(x, y)

∂B(x, y)
∂x

dxdy

− 4
∫ 1

0

∫ 1

0
a2B2(x, y)

∂B(x, y)
∂y

dxdy + 8a2
∫ 1

0

∫ 1

0
B2(x, y)

∂B(x, y)
∂x

∂B(x, y)
∂y

dxdy

+ 8a2
∫ 1

0

∫ 1

0
b(x, y)B3(x, y)dxdy − 4a2

∫ 1

0

∫ 1

0
(x + y) b(x, y)B2(x, y)dxdy − 1,

τ = a + 4ac(c − 1) − 4a(1 + a)
∫ 1

0

∫ 1

0

∂B(x, y)
∂x

dxdy

+ 8a(1 + a)
∫ 1

0

∫ 1

0
xy
∂B(x, y)
∂x

∂B(x, y)
∂y

dxdy + 8a(1 + a)c
∫ 1

0

∫ 1

0
xyb(x, y)dxdy

− 4a(1 + a)
∫ 1

0

∫ 1

0
xy (x + y) b(x, y)dxdy + 4a2

∫ 1

0

∫ 1

0
(x + y)

∂B(x, y)
∂x

dxdy

− 8a2
∫ 1

0

∫ 1

0
(x + y)

∂B(x, y)
∂x

∂B(x, y)
∂y

dxdy − 8a2c
∫ 1

0

∫ 1

0
(x + y)b(x, y)dxdy

+ 4a2
∫ 1

0

∫ 1

0
(x + y)2 b(x, y)dxdy − 4a2c2

∫ 1

0

∫ 1

0

∂B(x, y)
∂x

dxdy
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+ 8a2c2
∫ 1

0

∫ 1

0

∂B(x, y)
∂x

∂B(x, y)
∂y

dxdy + 8a2c3
∫ 1

0

∫ 1

0
b(x, y)dxdy

− 4a2c2
∫ 1

0

∫ 1

0
(x + y) b(x, y)dxdy,

ρ = 3(1 + a) − 12a
∫ 1

0

∫ 1

0
xy
∂B(x, y)
∂x

dxdy

− 12a
∫ 1

0

∫ 1

0
xy
∂B(x, y)
∂y

dxdy + 24a
∫ 1

0

∫ 1

0
xy
∂B(x, y)
∂x

∂B(x, y)
∂y

dxdy

+ 24a
∫ 1

0

∫ 1

0
xyb(x, y)B(x, y)dxdy − 12a

∫ 1

0

∫ 1

0
xy (x + y) b(x, y)dxdy − 3

and

Φ2 = 90a2
∫ 1

0

∫ 1

0

[
x − B(x, y)

]2 [
y − B(x, y)

]2 dxdy.

2.20. Sharifonnasabi et al. [29]’s copulas

For copulas given by

C(x, y) = K(x, y) exp
[
θϕ(x, y)

]
for 0 < x < 1, 0 < y < 1, −1 < θ < 1 and ϕ(x, y) in a suitable function, where K(x, y) is a valid copula,
we have

c(x, y) = θ2eθϕ(x,y)K(x, y)
∂ϕ(x, y)
∂x

∂ϕ(x, y)
∂y

+ θeθϕ(x,y)∂ϕ(x, y)
∂x

∂K(x, y)
∂y

+ θeθϕ(x,y)∂ϕ(x, y)
∂y

∂K(x, y)
∂x

+ θeθϕ(x,y)K(x, y)
∂2ϕ(x, y)
∂x∂y

+ eθϕ(x,y)∂
2K(x, y)
∂x∂y

,

β∗ = 4 K
(
1
2
,

1
2

)
exp

[
θϕ

(
1
2
,

1
2

)]
,

τ = 4θ2
∫ 1

0

∫ 1

0
K(x, y)e2θϕ(x,y)K(x, y)

∂ϕ(x, y)
∂x

∂ϕ(x, y)
∂y

dxdy

+ 4θ
∫ 1

0

∫ 1

0
K(x, y)e2θϕ(x,y)∂ϕ(x, y)

∂x
∂K(x, y)
∂y

dxdy

+ 4θ
∫ 1

0

∫ 1

0
K(x, y)e2θϕ(x,y)∂ϕ(x, y)

∂y
∂K(x, y)
∂x

dxdy

+ 4θ
∫ 1

0

∫ 1

0
K2(x, y)e2θϕ(x,y)∂

2ϕ(x, y)
∂x∂y
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+ 4
∫ 1

0

∫ 1

0
K(x, y)e2θϕ(x,y)∂

2K(x, y)
∂x∂y

dxdy − 1,

ρ = 12θ2
∫ 1

0

∫ 1

0
xyeθϕ(x,y)K(x, y)

∂ϕ(x, y)
∂x

∂ϕ(x, y)
∂y

dxdy

+ 12θ
∫ 1

0

∫ 1

0
xyeθϕ(x,y)∂ϕ(x, y)

∂x
∂K(x, y)
∂y

dxdy

+ 12θ
∫ 1

0

∫ 1

0
xyeθϕ(x,y)∂ϕ(x, y)

∂y
∂K(x, y)
∂x

dxdy

+ 12θ
∫ 1

0

∫ 1

0
xyeθϕ(x,y)K(x, y)

∂2ϕ(x, y)
∂x∂y

dxdy

+ 12
∫ 1

0

∫ 1

0
xyeθϕ(x,y)∂

2K(x, y)
∂x∂y

dxdy − 3

and

Φ2 = 90
∫ 1

0

∫ 1

0

[
K(x, y)

]2 e2θϕ(x,y)dxdy − 180
∫ 1

0

∫ 1

0
xyK(x, y)eθϕ(x,y)dxdy + 10.

2.21. Sharifonnasabi et al. [29]’s copulas

Consider a particular case of Section 2.20 for ϕ(x, y) = f (x)g(y). For copulas given by

C(x, y) = K(x, y) exp
[
θ f (x)g(y)

]
for 0 < x < 1, 0 < y < 1, −1 < θ < 1 and f (x), g(y) in suitable functions, where K(x, y) is a valid
copula, we have

c(x, y) = θ2eθ f (x)g(y)K(x, y) f (x)g(y) f
′

(x)g
′

(y) + θeθ f (x)g(y) f
′

(x)g(y)
∂K(x, y)
∂y

+ θeθ f (x)g(y) f (x)g
′

(y)
∂K(x, y)
∂x

+ θeθ f (x)g(y)K(x, y) f
′

(x)g
′

(y)

+ eθ f (x)g(y)∂
2K(x, y)
∂x∂y

,

β∗ = 4 K
(
1
2
,

1
2

)
exp

[
θ f

(
1
2

)
g
(
1
2

)]
,

τ = 4θ2
∫ 1

0

∫ 1

0
K(x, y)e2θ f (x)g(y)K(x, y) f (x)g(y) f

′

(x)g
′

(y)dxdy

+ 4θ
∫ 1

0

∫ 1

0
K(x, y)e2θ f (x)g(y) f

′

(x)g(y)
∂K(x, y)
∂y

dxdy

+ 4θ
∫ 1

0

∫ 1

0
K(x, y)e2θ f (x)g(y) f (x)g

′

(y)
∂K(x, y)
∂x

dxdy
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+ 4θ
∫ 1

0

∫ 1

0
K2(x, y)e2θ f (x)g(y) f

′

(x)g
′

(y)dxdy

+ 4
∫ 1

0

∫ 1

0
K(x, y)e2θ f (x)g(y)∂

2K(x, y)
∂x∂y

dxdy − 1,

ρ = 12θ2
∫ 1

0

∫ 1

0
xyeθ f (x)g(y)K(x, y) f (x)g(y) f

′

(x)g
′

(y)dxdy

+ 12θ
∫ 1

0

∫ 1

0
xyeθ f (x)g(y) f

′

(x)g(y)
∂K(x, y)
∂y

dxdy

+ 12θ
∫ 1

0

∫ 1

0
xyeθ f (x)g(y) f (x)g

′

(y)
∂K(x, y)
∂x

dxdy

+ 12θ
∫ 1

0

∫ 1

0
xyeθ f (x)g(y)K(x, y) f

′

(x)g
′

(y)dxdy

+ 12
∫ 1

0

∫ 1

0
xyeθ f (x)g(y)∂

2K(x, y)
∂x∂y

dxdy − 3

and

Φ2 = 90
∫ 1

0

∫ 1

0

[
K(x, y)

]2 e2θ f (x)g(y)dxdy − 180
∫ 1

0

∫ 1

0
xyK(x, y)eθ f (x)g(y)dxdy + 10.

2.22. Sharifonnasabi et al. [29]’s copulas

Consider a particular case of Section 2.20 for ϕ(x, y) = f (x) f (y). For copulas given by

C(x, y) = K(x, y) exp
[
θ f (x) f (y)

]
for 0 < x < 1, 0 < y < 1, −1 < θ < 1 and f in a suitable function, where K(x, y) is a valid copula, we
have

c(x, y) = θ2eθ f (x) f (y)K(x, y) f (x) f (y) f
′

(x) f
′

(y) + θeθ f (x) f (y) f
′

(x) f (y)
∂K(x, y)
∂y

+ θeθ f (x) f (y) f (x) f
′

(y)
∂K(x, y)
∂x

+ θeθ f (x) f (y)K(x, y) f
′

(x) f
′

(y)

+ eθ f (x) f (y)∂
2K(x, y)
∂x∂y

,

β∗ = 4 K
(
1
2
,

1
2

)
exp

[
θ f 2

(
1
2

)]
,

τ = 4θ2
∫ 1

0

∫ 1

0
K(x, y)e2θ f (x) f (y)K(x, y) f (x) f (y) f

′

(x) f
′

(y)dxdy

+ 4θ
∫ 1

0

∫ 1

0
K(x, y)e2θ f (x) f (y) f

′

(x) f (y)
∂K(x, y)
∂y

dxdy
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+ 4θ
∫ 1

0

∫ 1

0
K(x, y)e2θ f (x) f (y) f (x) f

′

(y)
∂K(x, y)
∂x

dxdy

+ 4θ
∫ 1

0

∫ 1

0
K2(x, y)e2θ f (x) f (y) f

′

(x) f
′

(y)dxdy

+ 4
∫ 1

0

∫ 1

0
K(x, y)e2θ f (x) f (y)∂

2K(x, y)
∂x∂y

dxdy − 1,

ρ = 12θ2
∫ 1

0

∫ 1

0
xyeθ f (x) f (y)K(x, y) f (x) f (y) f

′

(x) f
′

(y)dxdy

+ 12θ
∫ 1

0

∫ 1

0
xyeθ f (x) f (y) f

′

(x) f (y)
∂K(x, y)
∂y

dxdy

+ 12θ
∫ 1

0

∫ 1

0
xyeθ f (x) f (y) f (x) f

′

(y)
∂K(x, y)
∂x

dxdy

+ 12θ
∫ 1

0

∫ 1

0
xyeθ f (x) f (y)K(x, y) f

′

(x) f
′

(y)dxdy

+ 12
∫ 1

0

∫ 1

0
xyeθ f (x) f (y)∂

2K(x, y)
∂x∂y

dxdy − 3

and

Φ2 = 90
∫ 1

0

∫ 1

0

[
K(x, y)

]2 e2θ f (x) f (y)dxdy − 180
∫ 1

0

∫ 1

0
xyK(x, y)eθ f (x) f (y)dxdy + 10.

2.23. Sharifonnasabi et al. [29]’s copulas

For copulas given by

C(x, y) = K(x, y)
[
1 + θϕ(x, y)

]p
= K(x, y)

∞∑
i=0

(
p
i

)
θi [ϕ(x, y)

]i

for 0 < x < 1, 0 < y < 1, −1 < θ < 1, p > 0 and ϕ(x, y) in a suitable function, where K(x, y) is a valid
copula, we have

c(x, y) =
[
1 + θϕ(x, y)

]p ∂
2K(x, y)
∂x∂y

+ θp
∂K(x, y)
∂y

∂ϕ(x, y)
∂x

[
1 + θϕ(x, y)

]p−1

+ θp
∂K(x, y)
∂x

∂ϕ(x, y)
∂y

[
1 + θϕ(x, y)

]p−1

+ θpK(x, y)
∂2ϕ(x, y)
∂x∂y

[
1 + θϕ(x, y)

]p−1

+ θ2 p(p − 1)K(x, y)
[
1 + θϕ(x, y)

]p−2 ∂ϕ(x, y)
∂x

∂ϕ(x, y)
∂y
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=

∞∑
i=0

(
p
i

)
θi [ϕ(x, y)

]i ∂
2K(x, y)
∂x∂y

+ θp
∞∑

i=0

(
p − 1

i

)
θi [ϕ(x, y)

]i ∂K(x, y)
∂y

∂ϕ(x, y)
∂x

+ θp
∞∑

i=0

(
p − 1

i

)
θi [ϕ(x, y)

]i ∂K(x, y)
∂x

∂ϕ(x, y)
∂y

+ θp
∞∑

i=0

(
p − 1

i

)
θi [ϕ(x, y)

]i K(x, y)
∂2ϕ(x, y)
∂x∂y

+ θ2 p(p − 1)
∞∑

i=0

(
p − 2

i

)
θi [ϕ(x, y)

]i K(x, y)
∂ϕ(x, y)
∂x

∂ϕ(x, y)
∂y

,

β∗ = 4K
(
1
2
,

1
2

) [
1 + θϕ

(
1
2
,

1
2

)]p

− 1,

τ = 4
∞∑

i=0

∞∑
j=0

(
p
i

)(
p
j

)
θi+ j

∫ 1

0

∫ 1

0

[
ϕ(x, y)

]i+ j K(x, y)
∂2K(x, y)
∂x∂y

dxdy

+ 4θp
∞∑

i=0

∞∑
j=0

(
p − 1

i

)(
p
j

)
θi+ j

∫ 1

0

∫ 1

0

[
ϕ(x, y)

]i+ j K(x, y)
∂K(x, y)
∂y

∂ϕ(x, y)
∂x

dxdy

+ 4θp
∞∑

i=0

∞∑
j=0

(
p − 1

i

)(
p
j

)
θi+ j

∫ 1

0

∫ 1

0

[
ϕ(x, y)

]i+ j K(x, y)
∂K(x, y)
∂x

∂ϕ(x, y)
∂y

dxdy

+ 4θp
∞∑

i=0

∞∑
j=0

(
p − 1

i

)(
p
j

)
θi+ j

∫ 1

0

∫ 1

0

[
ϕ(x, y)

]i+ j K2(x, y)
∂2ϕ(x, y)
∂x∂y

dxdy

+ 4θ2 p(p − 1)
∞∑

i=0

∞∑
j=0

(
p − 2

i

)(
p
j

)
θi+ j

∫ 1

0

∫ 1

0

[
ϕ(x, y)

]i+ j K2(x, y)
∂ϕ(x, y)
∂x

∂ϕ(x, y)
∂y

dxdy − 1,

ρ = 12
∞∑

i=0

(
p
i

)
θi

∫ 1

0

∫ 1

0
xy

[
ϕ(x, y)

]i ∂
2K(x, y)
∂x∂y

dxdy

+ 12θp
∞∑

i=0

(
p − 1

i

)
θi

∫ 1

0

∫ 1

0
xy

[
ϕ(x, y)

]i ∂K(x, y)
∂y

∂ϕ(x, y)
∂x

dxdy

+ 12θp
∞∑

i=0

(
p − 1

i

)
θi

∫ 1

0

∫ 1

0
xy

[
ϕ(x, y)

]i ∂K(x, y)
∂x

∂ϕ(x, y)
∂y

dxdy

+ 12θp
∞∑

i=0

(
p − 1

i

)
θi

∫ 1

0

∫ 1

0
xy

[
ϕ(x, y)

]i K(x, y)
∂2ϕ(x, y)
∂x∂y

dxdy

+ 12θ2 p(p − 1)
∞∑

i=0

(
p − 2

i

)
θi

∫ 1

0

∫ 1

0
xy

[
ϕ(x, y)

]i K(x, y)
∂ϕ(x, y)
∂x

∂ϕ(x, y)
∂y

dxdy − 3
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and

Φ2 = 90
∞∑

i=0

∞∑
j=0

(
p
i

)(
p
j

)
θi+ j

∫ 1

0

∫ 1

0

[
K(x, y)

]2 [
ϕ(x, y)

]i+ j dxdy

− 180
∞∑

i=0

(
p
i

)
θi

∫ 1

0

∫ 1

0
xyK(x, y)

[
ϕ(x, y)

]i dxdy + 10.

If p > 0 is an integer then

C(x, y) = K(x, y)
p∑

i=0

(
p
i

)
θi [ϕ(x, y)

]i ,

c(x, y) =
p∑

i=0

(
p
i

)
θi [ϕ(x, y)

]i ∂
2K(x, y)
∂x∂y

+ θp
p−1∑
i=0

(
p − 1

i

)
θi [ϕ(x, y)

]i ∂K(x, y)
∂y

∂ϕ(x, y)
∂x

+ θp
p−1∑
i=0

(
p − 1

i

)
θi [ϕ(x, y)

]i ∂K(x, y)
∂x

∂ϕ(x, y)
∂y

+ θp
p−1∑
i=0

(
p − 1

i

)
θi [ϕ(x, y)

]i K(x, y)
∂2ϕ(x, y)
∂x∂y

+ θ2 p(p − 1)
p−2∑
i=0

(
p − 2

i

)
θi [ϕ(x, y)

]i K(x, y)
∂ϕ(x, y)
∂x

∂ϕ(x, y)
∂y

,

τ = 4
p∑

i=0

p∑
j=0

(
p
i

)(
p
j

)
θi+ j

∫ 1

0

∫ 1

0

[
ϕ(x, y)

]i+ j K(x, y)
∂2K(x, y)
∂x∂y

dxdy

+ 4θp
p−1∑
i=0

p∑
j=0

(
p − 1

i

)(
p
j

)
θi+ j

∫ 1

0

∫ 1

0

[
ϕ(x, y)

]i+ j K(x, y)
∂K(x, y)
∂y

∂ϕ(x, y)
∂x

dxdy

+ 4θp
p−1∑
i=0

p∑
j=0

(
p − 1

i

)(
p
j

)
θi+ j

∫ 1

0

∫ 1

0

[
ϕ(x, y)

]i+ j K(x, y)
∂K(x, y)
∂x

∂ϕ(x, y)
∂y

dxdy

+ 4θp
p−1∑
i=0

p∑
j=0

(
p − 1

i

)(
p
j

)
θi+ j

∫ 1

0

∫ 1

0

[
ϕ(x, y)

]i+ j K2(x, y)
∂2ϕ(x, y)
∂x∂y

dxdy

+ 4θ2 p(p − 1)
p−2∑
i=0

p∑
j=0

(
p − 2

i

)(
p
j

)
θi+ j

∫ 1

0

∫ 1

0

[
ϕ(x, y)

]i+ j K2(x, y)
∂ϕ(x, y)
∂x

∂ϕ(x, y)
∂y

dxdy − 1,

ρ = 12
p∑

i=0

(
p
i

)
θi

∫ 1

0

∫ 1

0
xy

[
ϕ(x, y)

]i ∂
2K(x, y)
∂x∂y

dxdy
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+ 12θp
p−1∑
i=0

(
p − 1

i

)
θi

∫ 1

0

∫ 1

0
xy

[
ϕ(x, y)

]i ∂K(x, y)
∂y

∂ϕ(x, y)
∂x

dxdy

+ 12θp
p−1∑
i=0

(
p − 1

i

)
θi

∫ 1

0

∫ 1

0
xy

[
ϕ(x, y)

]i ∂K(x, y)
∂x

∂ϕ(x, y)
∂y

dxdy

+ 12θp
p−1∑
i=0

(
p − 1

i

)
θi

∫ 1

0

∫ 1

0
xy

[
ϕ(x, y)

]i K(x, y)
∂2ϕ(x, y)
∂x∂y

dxdy

+ 12θ2 p(p − 1)
p−2∑
i=0

(
p − 2

i

)
θi

∫ 1

0

∫ 1

0
xy

[
ϕ(x, y)

]i K(x, y)
∂ϕ(x, y)
∂x

∂ϕ(x, y)
∂y

dxdy − 3

and

Φ2 = 90
p∑

i=0

p∑
j=0

(
p
i

)(
p
j

)
θi+ j

∫ 1

0

∫ 1

0

[
K(x, y)

]2 [
ϕ(x, y)

]i+ j dxdy

− 180
p∑

i=0

(
p
i

)
θi

∫ 1

0

∫ 1

0
xyK(x, y)

[
ϕ(x, y)

]i dxdy + 10.

2.24. Sharifonnasabi et al. [29]’s copulas

Consider a particular case of Section 2.23 for ϕ(x, y) = f (x)g(y). For copulas given by

C(x, y) = K(x, y)
[
1 + θ f (x)g(y)

]p
= K(x, y)

∞∑
i=0

(
p
i

)
θi [ f (x)g(y)

]i

for 0 < x < 1, 0 < y < 1, −1 < θ < 1, p > 0 and f (x), g(y) in suitable functions, where K(x, y) is a
valid copula, we have

c(x, y) =
[
1 + θ f (x)g(y)

]p ∂
2K(x, y)
∂x∂y

+ θp
∂K(x, y)
∂y

f
′

(x)g(y)
[
1 + θ f (x)g(y)

]p−1

+ θp
∂K(x, y)
∂x

f (x)g
′

(y)
[
1 + θ f (x)g(y)

]p−1

+ θpK(x, y) f
′

(x)g
′

(y)
[
1 + θ f (x)g(y)

]p−1

+ θ2 p(p − 1)K(x, y)
[
1 + θ f (x)g(y)

]p−2 f (x)g(y) f
′

(x)g
′

(y)

=

∞∑
i=0

(
p
i

)
θi [ f (x)g(y)

]i ∂
2K(x, y)
∂x∂y

+ θp
∞∑

i=0

(
p − 1

i

)
θi [ f (x)g(y)

]i ∂K(x, y)
∂y

f
′

(x)g(y)

+ θp
∞∑

i=0

(
p − 1

i

)
θi [ f (x)g(y)

]i ∂K(x, y)
∂x

f (x)g
′

(y)
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+ θp
∞∑

i=0

(
p − 1

i

)
θi [ f (x)g(y)

]i K(x, y) f
′

(x)g
′

(y)

+ θ2 p(p − 1)
∞∑

i=0

(
p − 2

i

)
θi [ f (x)g(y)

]i K(x, y) f (x)g(y) f
′

(x)g
′

(y),

β∗ = 4K
(
1
2
,

1
2

) [
1 + θ f

(
1
2

)
g
(
1
2

)]p

− 1,

τ = 4
∞∑

i=0

∞∑
j=0

(
p
i

)(
p
j

)
θi+ j

∫ 1

0

∫ 1

0

[
f (x)g(y)

]i+ j K(x, y)
∂2K(x, y)
∂x∂y

dxdy

+ 4θp
∞∑

i=0

∞∑
j=0

(
p − 1

i

)(
p
j

)
θi+ j

∫ 1

0

∫ 1

0

[
f (x)g(y)

]i+ j K(x, y)
∂K(x, y)
∂y

f
′

(x)g(y)dxdy

+ 4θp
∞∑

i=0

∞∑
j=0

(
p − 1

i

)(
p
j

)
θi+ j

∫ 1

0

∫ 1

0

[
f (x)g(y)

]i+ j K(x, y)
∂K(x, y)
∂x

f (x)g
′

(y)dxdy

+ 4θp
∞∑

i=0

∞∑
j=0

(
p − 1

i

)(
p
j

)
θi+ j

∫ 1

0

∫ 1

0

[
f (x)g(y)

]i+ j K2(x, y) f
′

(x)g
′

(y)dxdy

+ 4θ2 p(p − 1)
∞∑

i=0

∞∑
j=0

(
p − 2

i

)(
p
j

)
θi+ j

∫ 1

0

∫ 1

0

[
f (x)g(y)

]i+ j K2(x, y) f (x)g(y) f
′

(x)g
′

(y)dxdy − 1,

ρ = 12
∞∑

i=0

(
p
i

)
θi

∫ 1

0

∫ 1

0
xy

[
f (x)g(y)

]i ∂
2K(x, y)
∂x∂y

dxdy

+ 12θp
∞∑

i=0

(
p − 1

i

)
θi

∫ 1

0

∫ 1

0
xy

[
f (x)g(y)

]i ∂K(x, y)
∂y

f
′

(x)g(y)dxdy

+ 12θp
∞∑

i=0

(
p − 1

i

)
θi

∫ 1

0

∫ 1

0
xy

[
f (x)g(y)

]i ∂K(x, y)
∂x

f (x)g
′

(y)dxdy

+ 12θp
∞∑

i=0

(
p − 1

i

)
θi

∫ 1

0

∫ 1

0
xy

[
f (x)g(y)

]i K(x, y) f
′

(x)g
′

(y)dxdy

+ 12θ2 p(p − 1)
∞∑

i=0

(
p − 2

i

)
θi

∫ 1

0

∫ 1

0
xy

[
f (x)g(y)

]i K(x, y) f (x)g(y) f
′

(x)g
′

(y)dxdy − 3

and

Φ2 = 90
∞∑

i=0

∞∑
j=0

(
p
i

)(
p
j

)
θi+ j

∫ 1

0

∫ 1

0

[
K(x, y)

]2 [
f (x)g(y)

]i+ j dxdy

− 180
∞∑

i=0

(
p
i

)
θi

∫ 1

0

∫ 1

0
xyK(x, y)

[
f (x)g(y)

]i dxdy + 10.
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If p > 0 is an integer then

C(x, y) = K(x, y)
p∑

i=0

(
p
i

)
θi [ f (x)g(y)

]i ,

c(x, y) =
p∑

i=0

(
p
i

)
θi [ f (x)g(y)

]i ∂
2K(x, y)
∂x∂y

+ θp
p−1∑
i=0

(
p − 1

i

)
θi [ f (x)g(y)

]i ∂K(x, y)
∂y

f
′

(x)g(y)

+ θp
p−1∑
i=0

(
p − 1

i

)
θi [ f (x)g(y)

]i ∂K(x, y)
∂x

f (x)g
′

(y)

+ θp
p−1∑
i=0

(
p − 1

i

)
θi [ f (x)g(y)

]i K(x, y) f
′

(x)g
′

(y)

+ θ2 p(p − 1)
p−2∑
i=0

(
p − 2

i

)
θi [ f (x)g(y)

]i K(x, y) f (x)g(y) f
′

(x)g
′

(y),

τ = 4
p∑

i=0

p∑
j=0

(
p
i

)(
p
j

)
θi+ j

∫ 1

0

∫ 1

0

[
f (x)g(y)

]i+ j K(x, y)
∂2K(x, y)
∂x∂y

dxdy

+ 4θp
p−1∑
i=0

p∑
j=0

(
p − 1

i

)(
p
j

)
θi+ j

∫ 1

0

∫ 1

0

[
f (x)g(y)

]i+ j K(x, y)
∂K(x, y)
∂y

f
′

(x)g(y)dxdy

+ 4θp
p−1∑
i=0

p∑
j=0

(
p − 1

i

)(
p
j

)
θi+ j

∫ 1

0

∫ 1

0

[
f (x)g(y)

]i+ j K(x, y)
∂K(x, y)
∂x

f (x)g
′

(y)dxdy

+ 4θp
p−1∑
i=0

p∑
j=0

(
p − 1

i

)(
p
j

)
θi+ j

∫ 1

0

∫ 1

0

[
f (x)g(y)

]i+ j K2(x, y) f
′

(x)g
′

(y)dxdy

+ 4θ2 p(p − 1)
p−2∑
i=0

p∑
j=0

(
p − 2

i

)(
p
j

)
θi+ j

∫ 1

0

∫ 1

0

[
f (x)g(y)

]i+ j K2(x, y) f (x)g(y) f
′

(x)g
′

(y)dxdy − 1,

ρ = 12
p∑

i=0

(
p
i

)
θi

∫ 1

0

∫ 1

0
xy

[
f (x)g(y)

]i ∂
2K(x, y)
∂x∂y

dxdy

+ 12θp
p−1∑
i=0

(
p − 1

i

)
θi

∫ 1

0

∫ 1

0
xy

[
f (x)g(y)

]i ∂K(x, y)
∂y

f
′

(x)g(y)dxdy

+ 12θp
p−1∑
i=0

(
p − 1

i

)
θi

∫ 1

0

∫ 1

0
xy

[
f (x)g(y)

]i ∂K(x, y)
∂x

f (x)g
′

(y)dxdy
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+ 12θp
p−1∑
i=0

(
p − 1

i

)
θi

∫ 1

0

∫ 1

0
xy

[
f (x)g(y)

]i K(x, y) f
′

(x)g
′

(y)dxdy

+ 12θ2 p(p − 1)
p−2∑
i=0

(
p − 2

i

)
θi

∫ 1

0

∫ 1

0
xy

[
f (x)g(y)

]i K(x, y) f (x)g(y) f
′

(x)g
′

(y)dxdy − 3

and

Φ2 = 90
p∑

i=0

p∑
j=0

(
p
i

)(
p
j

)
θi+ j

∫ 1

0

∫ 1

0

[
K(x, y)

]2 [
f (x)g(y)

]i+ j dxdy

− 180
p∑

i=0

(
p
i

)
θi

∫ 1

0

∫ 1

0
xyK(x, y)

[
f (x)g(y)

]i dxdy + 10.

2.25. Sharifonnasabi et al. [29]’s copulas

Consider a particular case of Section 2.23 for ϕ(x, y) = f (x) f (y). For copulas given by

C(x, y) = K(x, y)
[
1 + θ f (x) f (y)

]p
= K(x, y)

∞∑
i=0

(
p
i

)
θi [ f (x) f (y)

]i

for 0 < x < 1, 0 < y < 1, −1 < θ < 1, p > 0 and f in a suitable function, where K(x, y) is a valid
copula, we have

c(x, y) =
[
1 + θ f (x) f (y)

]p ∂
2K(x, y)
∂x∂y

+ θp
∂K(x, y)
∂y

f
′

(x) f (y)
[
1 + θ f (x) f (y)

]p−1

+ θp
∂K(x, y)
∂x

f (x) f
′

(y)
[
1 + θ f (x) f (y)

]p−1

+ θpK(x, y) f
′

(x) f
′

(y)
[
1 + θ f (x) f (y)

]p−1

+ θ2 p(p − 1)K(x, y)
[
1 + θ f (x) f (y)

]p−2 f (x) f (y) f
′

(x) f
′

(y)

=

∞∑
i=0

(
p
i

)
θi [ f (x) f (y)

]i ∂
2K(x, y)
∂x∂y

+ θp
∞∑

i=0

(
p − 1

i

)
θi [ f (x) f (y)

]i ∂K(x, y)
∂y

f
′

(x) f (y)

+ θp
∞∑

i=0

(
p − 1

i

)
θi [ f (x) f (y)

]i ∂K(x, y)
∂x

f (x) f
′

(y)

+ θp
∞∑

i=0

(
p − 1

i

)
θi [ f (x) f (y)

]i K(x, y) f
′

(x) f
′

(y)

+ θ2 p(p − 1)
∞∑

i=0

(
p − 2

i

)
θi [ f (x) f (y)

]i K(x, y) f (x) f (y) f
′

(x) f
′

(y),
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β∗ = 4K
(
1
2
,

1
2

) [
1 + θ f 2

(
1
2

)]p

− 1,

τ = 4
∞∑

i=0

∞∑
j=0

(
p
i

)(
p
j

)
θi+ j

∫ 1

0

∫ 1

0

[
f (x) f (y)

]i+ j K(x, y)
∂2K(x, y)
∂x∂y

dxdy

+ 4θp
∞∑

i=0

∞∑
j=0

(
p − 1

i

)(
p
j

)
θi+ j

∫ 1

0

∫ 1

0

[
f (x) f (y)

]i+ j K(x, y)
∂K(x, y)
∂y

f
′

(x) f (y)dxdy

+ 4θp
∞∑

i=0

∞∑
j=0

(
p − 1

i

)(
p
j

)
θi+ j

∫ 1

0

∫ 1

0

[
f (x) f (y)

]i+ j K(x, y)
∂K(x, y)
∂x

f (x) f
′

(y)dxdy

+ 4θp
∞∑

i=0

∞∑
j=0

(
p − 1

i

)(
p
j

)
θi+ j

∫ 1

0

∫ 1

0

[
f (x) f (y)

]i+ j K2(x, y) f
′

(x) f
′

(y)dxdy

+ 4θ2 p(p − 1)
∞∑

i=0

∞∑
j=0

(
p − 2

i

)(
p
j

)
θi+ j

∫ 1

0

∫ 1

0

[
f (x) f (y)

]i+ j K2(x, y) f (x) f (y) f
′

(x) f
′

(y)dxdy − 1,

ρ = 12
∞∑

i=0

(
p
i

)
θi

∫ 1

0

∫ 1

0
xy

[
f (x) f (y)

]i ∂
2K(x, y)
∂x∂y

dxdy

+ 12θp
∞∑

i=0

(
p − 1

i

)
θi

∫ 1

0

∫ 1

0
xy

[
f (x) f (y)

]i ∂K(x, y)
∂y

f
′

(x) f (y)dxdy

+ 12θp
∞∑

i=0

(
p − 1

i

)
θi

∫ 1

0

∫ 1

0
xy

[
f (x) f (y)

]i ∂K(x, y)
∂x

f (x) f
′

(y)dxdy

+ 12θp
∞∑

i=0

(
p − 1

i

)
θi

∫ 1

0

∫ 1

0
xy

[
f (x) f (y)

]i K(x, y) f
′

(x) f
′

(y)dxdy

+ 12θ2 p(p − 1)
∞∑

i=0

(
p − 2

i

)
θi

∫ 1

0

∫ 1

0
xy

[
f (x) f (y)

]i K(x, y) f (x) f (y) f
′

(x) f
′

(y)dxdy − 3

and

Φ2 = 90
∞∑

i=0

∞∑
j=0

(
p
i

)(
p
j

)
θi+ j

∫ 1

0

∫ 1

0

[
K(x, y)

]2 [
f (x) f (y)

]i+ j dxdy

− 180
∞∑

i=0

(
p
i

)
θi

∫ 1

0

∫ 1

0
xyK(x, y)

[
f (x) f (y)

]i dxdy + 10.

If p > 0 is an integer then

C(x, y) = K(x, y)
p∑

i=0

(
p
i

)
θi [ f (x) f (y)

]i ,
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c(x, y) =
p∑

i=0

(
p
i

)
θi [ f (x) f (y)

]i ∂
2K(x, y)
∂x∂y

+ θp
p−1∑
i=0

(
p − 1

i

)
θi [ f (x) f (y)

]i ∂K(x, y)
∂y

f
′

(x) f (y)

+ θp
p−1∑
i=0

(
p − 1

i

)
θi [ f (x) f (y)

]i ∂K(x, y)
∂x

f (x) f
′

(y)

+ θp
p−1∑
i=0

(
p − 1

i

)
θi [ f (x) f (y)

]i K(x, y) f
′

(x) f
′

(y)

+ θ2 p(p − 1)
p−2∑
i=0

(
p − 2

i

)
θi [ f (x) f (y)

]i K(x, y) f (x) f (y) f
′

(x) f
′

(y),

τ = 4
p∑

i=0

p∑
j=0

(
p
i

)(
p
j

)
θi+ j

∫ 1

0

∫ 1

0

[
f (x) f (y)

]i+ j K(x, y)
∂2K(x, y)
∂x∂y

dxdy

+ 4θp
p−1∑
i=0

p∑
j=0

(
p − 1

i

)(
p
j

)
θi+ j

∫ 1

0

∫ 1

0

[
f (x) f (y)

]i+ j K(x, y)
∂K(x, y)
∂y

f
′

(x) f (y)dxdy

+ 4θp
p−1∑
i=0

p∑
j=0

(
p − 1

i

)(
p
j

)
θi+ j

∫ 1

0

∫ 1

0

[
f (x) f (y)

]i+ j K(x, y)
∂K(x, y)
∂x

f (x) f
′

(y)dxdy

+ 4θp
p−1∑
i=0

p∑
j=0

(
p − 1

i

)(
p
j

)
θi+ j

∫ 1

0

∫ 1

0

[
f (x) f (y)

]i+ j K2(x, y) f
′

(x) f
′

(y)dxdy

+ 4θ2 p(p − 1)
p−2∑
i=0

p∑
j=0

(
p − 2

i

)(
p
j

)
θi+ j

∫ 1

0

∫ 1

0

[
f (x) f (y)

]i+ j K2(x, y) f (x) f (y) f
′

(x) f
′

(y)dxdy − 1,

ρ = 12
p∑

i=0

(
p
i

)
θi

∫ 1

0

∫ 1

0
xy

[
f (x) f (y)

]i ∂
2K(x, y)
∂x∂y

dxdy

+ 12θp
p−1∑
i=0

(
p − 1

i

)
θi

∫ 1

0

∫ 1

0
xy

[
f (x) f (y)

]i ∂K(x, y)
∂y

f
′

(x) f (y)dxdy

+ 12θp
p−1∑
i=0

(
p − 1

i

)
θi

∫ 1

0

∫ 1

0
xy

[
f (x) f (y)

]i ∂K(x, y)
∂x

f (x) f
′

(y)dxdy

+ 12θp
p−1∑
i=0

(
p − 1

i

)
θi

∫ 1

0

∫ 1

0
xy

[
f (x) f (y)

]i K(x, y) f
′

(x) f
′

(y)dxdy

+ 12θ2 p(p − 1)
p−2∑
i=0

(
p − 2

i

)
θi

∫ 1

0

∫ 1

0
xy

[
f (x) f (y)

]i K(x, y) f (x) f (y) f
′

(x) f
′

(y)dxdy − 3
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and

Φ2 = 90
p∑

i=0

p∑
j=0

(
p
i

)(
p
j

)
θi+ j

∫ 1

0

∫ 1

0

[
K(x, y)

]2 [
f (x) f (y)

]i+ j dxdy

− 180
p∑

i=0

(
p
i

)
θi

∫ 1

0

∫ 1

0
xyK(x, y)

[
f (x) f (y)

]i dxdy + 10.

2.26. Gaussian copula

A Gaussian copula is a statistical tool used to model and describe the dependence structure between
two variables by linking their marginal distributions through a bivariate normal distribution. For the
Gaussian copula given by

C(x, y) = Φ2

(
Φ−1(x),Φ−1(y)

)
for 0 < x < 1 and 0 < y < 1, where

Φ(x) =
∫ x

−∞

ϕ(t)dt =
1
√

2π

∫ x

−∞

exp
(
−

t2

2

)
dt

and

Φ2(x, y) =
∫ y

−∞

∫ x

−∞

ϕ2(s, t)dsdt =
1

2π
√

1 − ρ2

∫ y

−∞

∫ x

−∞

exp
[
−

s2 − 2ρst + t2

2
(
1 − ρ2) ]

dsdt,

we have

c(x, y) =
ϕ2

(
Φ−1(x),Φ−1(y)

)
ϕ
(
Φ−1(x)

)
ϕ
(
Φ−1(y)

) ,

β∗ =
2
π

arcsin ρ,

τ =
2
π

arcsin ρ,

ρ =
6
π

arcsin
ρ

2

and

Φ2 = 90
∫ 1

0

∫ 1

0

[
Φ2

(
Φ−1(x),Φ−1(y)

)
− xy

]2
dxdy.
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2.27. Student’s t copula

The Student’s t copula is a bivariate copula derived from the Student’s t distribution, used to model
dependence structures with tail dependence, allowing for stronger correlations in the tails compared to
the Gaussian copula. For the Student’s t copula given by

C(x, y) = T 2

(
T−1

a (x),T−1
b (y)

)
for 0 < x < 1 and 0 < y < 1, where

Ta(x) =
∫ x

−∞

ta(t)dt =
Γ
(

a+1
2

)
√

aπΓ
(

a
2

) ∫ x

−∞

(
1 +

t2

a

)− a+1
2

dt

and

T 2(x, y) =
∫ y

−∞

∫ x

−∞

t2(s, t)dsdt =
Γ
(

a+2
2

)
aπΓ

(
a
2

) √
1 − ρ2

∫ y

−∞

∫ x

−∞

[
1 +

s2 − 2ρst + t2

2a
(
1 − ρ2) ]− a+2

2

dsdt,

we have

c(x, y) =
t2

(
T−1

a (x),T−1
a (y)

)
ta

(
T−1

a (x)
)

ta
(
T−1

a (y)
) ,

β∗ = 4T 2 (0, 0) − 1,

τ = 4
∫ 1

0

∫ 1

0
T 2

(
T−1

a (x),T−1
b (y)

) t2

(
T−1

a (x),T−1
a (y)

)
ta

(
T−1

a (x)
)

ta
(
T−1

a (y)
)dxdy − 1,

ρ = 12
∫ 1

0

∫ 1

0

xyt2

(
T−1

a (x),T−1
a (y)

)
ta

(
T−1

a (x)
)

ta
(
T−1

a (y)
)dxdy − 3

and

Φ2 = 90
∫ 1

0

∫ 1

0

[
T 2

(
T−1

a (x),T−1
b (y)

)
− xy

]2
dxdy.

3. Conclusions

In this paper, we have provided general expressions for Blomqvist’s β∗, Kendall’s τ, Spearman’s ρ
and Hoeffding’s Φ2 for twenty-seven families of bivariate copulas. These general expressions can be
used to derive a wide class of closed form expressions. For example, if C is the standard FGM copula
then ψ(x) = 1 − x in Section 2.12. By noting that

Im,n,ψ =

∫ 1

0
xm (1 − x)n dx = B (m + 1, n + 1)
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and

Jm,n,ψ = −

∫ 1

0
xm (1 − x)n dx = −B (m + 1, n + 1) ,

we see that Section 2.12 gives explicit expressions for the four dependence measures. If C is the copula
due to Shih and Emura [31] then ψ(x) = (1 − xp)q in Section 2.12. By noting that

Im,n,ψ =

∫ 1

0
xm (1 − xp)nq dx =

1
p

B
(
m + 1

p
, nq + 1

)
and

Jm,n,ψ = −pq
∫ 1

0
xm+p−1 (1 − x)nq+q−1 dx = −qB

(
m
p
+ 1, (n + 1)q

)
,

we see that Section 2.12 gives explicit expressions for the four dependence measures.
Future work is to derive expressions for dependence measures for multivariate copulas, complex

variate copulas, matrix variate copulas and fuzzy copulas.
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