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1. Introduction

In statistics, a copula is a mathematical concept used to describe the dependence structure between
random variables. It allows researchers to model and understand the relationships between variables,
particularly their joint distribution, without making assumptions about the marginal distributions.
A copula is a function that links univariate marginal distribution functions to form a multivariate
distribution function. Formally, a copula C is a multivariate cumulative distribution function with
uniform marginals on the interval [0, 1].

Sklar’s theorem [33] is fundamental in the theory of copulas. It states that for any bivariate joint
distribution function H with marginals F, F,, there exists a copula C such that

H (x1,x) = C(Fi(x1), F>(x2)).

If Fy, F, are continuous, the copula C is unique. Conversely, given a copula C and marginal distribution
functions Fy, F,, the function H defined above is a joint distribution function with Fy, F, as its

marginals. Let c(x,y) = %C(x, y) denote the copula density.


https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.2025995

22337

Application areas of copulas include finance, insurance, hydrology, engineering and economics.
Some recent papers on applications of copulas include [5, 26, 27, 30, 32]. Comprehensive accounts of
the theory of copulas can be found in [25, 14, 21].

The aim of this paper is to derive expressions for dependence measures for bivariate copulas. Given
acopula C : [0, 1]x[0, 1] — [0, 1], the four most popular dependence measures are Blomqvist’s 8 [4],
Kendall’s 7 [22], Spearman’s p and Hoeffding’s ®? [20], see also [1]. They are defined by
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The ranges of these dependence measuresare —1 <5 <3,-1<7<1,-1<p<land0< P> < I.
Furthermore,

Y(r) <p <¥(-1),

where

¥, (x), if £ < x < 32 for somen > 2,
where
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This result is due to [28].

Blomgqyvist’s 8%, Kendall’s 7, Spearman’s p and Hoeffding’s ®? are statistical measures that assess the
relationship between two variables, but they capture different aspects of this relationship. Blomqvist’s
B* is a measure of concordance that focuses on the median of the joint distribution, making it robust
to outliers and suitable for non-parametric settings. Kendall’s 7 measures the strength of monotonic
relationships by comparing the number of concordant and discordant pairs of observations, offering
an intuitive interpretation and resilience to nonlinear associations. Spearman’s p is a rank-based
correlation coefficient that assesses the monotonic relationship between variables, sensitive to all rank
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orders, making it more influenced by extreme values than Kendall’s 7. Hoeffding’s ®* is a measure
of dependence that detects nonlinear relationships by evaluating the joint distribution’s deviation from
independence, making it powerful for identifying complex associations.

While all these measures share the goal of quantifying dependence, they differ in sensitivity and
scope. Kendall’s 7 and Spearman’s p are closely related and often yield similar results, but Kendall’s
7 provides a more natural probabilistic interpretation. Blomqvist’s 8* is simpler and focuses on central
relationships, while Hoeffding’s ®? stands out by detecting broader nonlinear dependencies at the cost
of being less interpretable in common applications. Choosing among these measures depends on the
type of relationship, robustness needed, and interpretive clarity desired.

Having exact expressions for (1.1) to (1.4) provides significant advantages in statistical analysis
and dependence modeling. Exact expressions enable precise computation without relying on
approximations, which is especially beneficial for small sample sizes or when assessing subtle
dependencies. They facilitate analytical comparisons among measures, enhancing the understanding
of their behavior and interrelationships under different data scenarios. Moreover, exact formulas allow
for efficient implementation in software, reducing computational overhead and improving the accuracy
of results in real-world applications, such as hypothesis testing and copula modeling. These benefits
make them invaluable tools for rigorous and reproducible statistical research.

Closed form expressions for (1.1) to (1.4) are not known for many bivariate copulas. In this paper,
we state expressions enabling closed form expressions for (1.1) to (1.4), see Section 2. The expressions
in Section 2 excluding Sections 2.1, 2.2, 2.5, 2.26 and 2.27 are new and original. Their derivations can
be obtained from the corresponding author. Nearly thirty classes of bivariate copulas are considered.
Conclusions and the use of the expressions in Section 2 are discussed in Section 3.

2. Exact expressions for dependence measures

In this section, we state without derivations general expressions for (1.1) to (1.4) for survival
copulas, Bernstein copulas, power type copulas, Archimedean copulas, [3]’s copulas, [16]’s copulas,
Farlie-Gumbel-Morgenstern (FGM) type copulas, Chesneau [6]’s copulas, Chesneau [7, 8]’s copulas,
linear combination of copulas, power combination of copulas, [13]’s copulas, [15]’s copulas, [23]’s
perturbed copulas, [29]’s copulas, Gaussian copula and Student’s t copula. Most of these expressions
are new and original.

2.1. Survival copulas

Survival copulas are a type of copula function used to model the dependence structure between
random variables by focusing on their joint survival (upper tail) probabilities rather than their lower
tail behavior. They are particularly useful in risk management, reliability engineering, and actuarial
science, where understanding the likelihood of extreme co-occurring events (for example, simultaneous
failures or high losses) is crucial. For a survival copula given by

Cx,y)=x+y—-1+8(1—-x,1-y)
for0 < x < 1and 0 <y < 1, where 8 is a valid copula, we have

C(X’)’) = b(l - X 1 _y)a
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and

where b(x,y) = axayB(x y).

2.2. Bernstein copulas

A Bernstein copula is a type of copula function that leverages Bernstein polynomials to approximate
the underlying copula structure, offering a non-parametric way to model dependency between random
variables. These copulas are particularly useful for capturing complex, nonlinear dependencies in
bivariate data. Bernstein copulas are flexible and can approximate any copula as the degree of the
Bernstein polynomial increases, making them powerful tools for modeling relationships without strong
assumptions about the form of dependence. They are often employed in statistical and financial
applications where understanding joint distributions is crucial.

For Bernstein copulas specified given by

C(x,y) = Zm: Zn: ( . ‘)(l.)xi(l - X)m_i(’;)yj(l -y

for0 < x < 1land 0 < y < 1, where cy(i l) is a real valued constant indexed by (i, j) such that
0<i<m,0<j<n,wehave

c(x,y) = 22 (_ _.)(l)[zx(l x)" "—(m_i)xi(l_x)m—i—l]
()

V(=) = (= (1 =y,

Y S )( )()1

i=0 j=0

222,25 ) s GG
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where B(a, b) denotes the beta function.

2.3. Power type copulas [9, 10]

For the copulas given by
C(x,y) = XP(x,y)yQ(x,y)

for0 < x < 1 and 0 < y < 1, where P(x,y) and Q(x,y) are suitable functions such that C(0,0) = 0,
C0,1)=0,C(1,0)=0and C(1,1) = 1, we have

OP(x, ,OP(x,y) OP(x,
c(x, y) = xXPED1500 p( y)# log x + X700 ((;; Y) ((;; Y) (log x)?
4 xPO=1,00) oP(x, Y) L P o0 PO, Y,
oy 0xdy
90(x,
XY OET PG, 1) Q(x, ) + T PG, y)% logy
oP 0P(x,y) 00(x,
4 x Py Q-1 (x,y) I O, y) log x + xPE0yQ0) (x,y) 0Q(x. y) log xlog y
Ox ox  dy
oP 0
4 P06 (x,y) 0Q(x, y) log xlog y
ay 0x
4 PO 00 199(x,y) 0(x, y) log y + xP&)y QG 99(%,y) 9Q(x, y)( g y)>?
dx Ox dy
00(x, 0?
4 POy~ Q(gx Y) P00 aQ(x ) log y,
X xdy

g =Pk )
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2.4. Power type copulas [9, 10]

We consider the particular case in Section 2.3 for P(x,y) = Q(x,y). For the copulas given by
C(x, y) — xP(x,)’)yP(x,Y) 2.1)

for0 < x < 1,0 <y < 1and P(x,y) in a suitable function, we have
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An example of (2.1) with P(x,y) = 1 + a(l — x)(1 —y), 0 < a < 1 is given by Proposition 1 in
Chesneau [11].

2.5. Archimedean copulas

Archimedean copulas are a family of copulas used in statistics to model the dependence structure
between random variables, defined through a generator function that is both decreasing and convex.
They are popular for their simplicity and flexibility, allowing for a wide range of dependency patterns
by varying the generator function. A copula C is called Archimedean if it admits the representation

C(x,y;0) = g7 (g(x;0) + g(v;0); ),

where g : [0,1] X ® — [0, c0) is a continuous, strictly decreasing and convex function such that
g(1;6) = 0, 6 is a parameter within some parameter space ®, and g is the so-called generator function
and g~! is its pseudo-inverse defined by

gl (1;0), if0<1<g0;0),
g'(#:0) =
0, if g(0;6) <t < oo,
For Archimedean copulas specified by

C(x,y) = g ' (g(x) + g(»)

forO<x<1landO0 <y < 1, we have

g g Mg (g7 (g +2())
[s' (87! (8(x) + sON)I

el
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g0
=1+4 dt,
! ¥ fog()

A f fl xyg (g (1)g” (g7 <g<x>+g(y>>)d
[g' (g7 (g(x) + g’

xdy — 3
and

1 1 1 1
=90 fo fo |67 (o) + 8] dxdy — 180 ﬁ ﬁ xyg™! (8(x) + g(v)) dxdy + 10.

We now give three examples. For Clayton copula [12], g(r) = ==, g7'(t) = (1 +00)70, g (f) = -0

and g"(t) = (1 + §)r %72 for § € [-1, o)\ {0}. So

(P+y 1) ", if0<x<10<y<lx’+y?>1,
C(x,y) =

0, otherwise,

_1l_9
0+ Dx 1y (x_g +y - 1) T if0<x<1,0<y<Lx?+y?>1,
c(x,y) =
0, otherwise,

and
= 90\[1 f] I{x‘9+y_9 > 1}(x_9+y_9— l)_% dxdy
0o Jo
- 180 fl fl I{x‘g +y > l}xy(x_e +y?f— 1)_é dxdy + 10.
0o Jo

For Ali, Mikhail and Haq’s copula [2], g(¥) = log[l 01— z)] gl =

" (1-0)(1-6+261) _
g (= TRy for—1 <6< 1. So,

1-6

exp(t) 5 8 o= ~ ey and

Xy
1-60(1-x1-y)

C(x,y) =
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0)x“y
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For Gumbel-Hougaard’s copula [25], g() = (—log?)’, g7'(t) = exp (—té), g = -2 (~log "'
and g"(¢) = t% (—log t)g_1 + Mt;l) (—log t)e_2 for 6 > 1. So,

C(x.y) = exp{ - [(~log )" + (~Togy)]' |,
1 2
(.3 = C(x.y) 5 (- log ! (~ logy)"™ [(~1ogx)” + (~logy)]

1

St y)xiy(_ log )" (- log )™ [~ log 1)’ + (- log )| "™

1 1 1 2_
p=12 [ [ clun-log (- togy)” ! [ log 0 + (~logy | daay
o Jo Xy
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1 1
1 1
—12(1-6) f f C(x,y)—(~log )’ (~ log y)*"" [(~ log x)" + (- log )|’ " dxdy -3
0 Jo Xy
and

— 90 f f exp {2 [(~log v’ + (= logy)’| }dxdy
180 f f xyexp{—[(—logx)ﬁ+(—1ogy)(’]‘l’}dxdy+10.
0 0

2.6. Alzaid and Alhadlaq [3]’s copulas
For the copulas given by
C(x,y) = FT (F()F(y))

for 0 < x < 1and 0 < y < 1, where F is a strictly increasing log-concave cumulative distribution
function, we have

FOLO) [f FOF) - FOFO)f (FXFO))]
[f FFO)] ’

- i)

\ f f FLF@) + FOD F@F0)[f FOFO) = FOF)S FOFO)]
T:
0 Jo [f FQFO)P

c(x,y) =

dxdy -1,

f fl fOLO) | f FOF) - F&)FO)f (F(x)F(y»]

dxdy -3
[f FOF)]

and
1 1 2 1 1
=90 f f |[F (FF ()| dxdy - 180 f f xyF ™' (F(x)F(y)) dxdy + 10.
0 0 0 0

2.7. El Ktaibi et al. [16]’s copulas

For the copulas given by

Clx,y) = = xy )0 [¢(x, )]
i=0

Ay
1 - 9¢(x’ }’)
for 0 < x < 1,0 <y < 1, and suitable values of 8 and ¢(x, y) in a suitable function, we have
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;; 0 Jo lzz(; 0 Jo

2.8. El Ktaibi et al. [16]’s copulas
We consider the particular case in Section 2.7 for ¢(x,y) = f(x)g(y). For the copulas given by

(o)

2=y > [

C(X, y) = m i=0

for0 < x < 1,0 <y < 1, and suitable values of 8 and f, g in suitable functions, we have

Ax3) = 1 N Of(x)y  9g(y)
’ 1-0f(0)8()  [1-0f(0)g0)]
Ox df (x) Oxy af (x) 0g(y)

+
Tl —6s0F 9% [1-6fg0)F ox oy
N 20°xyf(x)g(y) Af(x)g(y)
[1-6f(0gy] 0x Oy

= Z o' [f()] + Oy Z(z + DI [fO] s ==

i=

i g(y)

i i+1 (9f(x)
+0xZ(z+ DO [f)] [g0)] o

i=0

8f (x) 9g(»)
oy

i+1 8f(x) 0g(y)
“ay

+ Oxy Z(i+ D [f(0)] [s0)] ==

+26%xy Z(z + )i + )8 [f(x)g(y)]

© 1l
=4 Yo fo fo [£(02)]™ dxdy

i=0 j=0
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ca0 3 G0 [ el e By

i=0 j=0

a6 Z Z(J +De f f 2yl ol 2 (x)d dy
i=0 j=0

+ 492 Z(] + 1)9‘“[ f 22 [FO) [en] ™ af(x) 58’()’)61 dy
i=0 j=0

+ 8@2 Z(-] + 1)(] + 2)9i+jf f x2y2 [f(X)] [g(y)]i+j+l mwdxdy _1
i=0 j=0 0o Jo Ox 0Oy

© ol el _ o ool . .0
p=1230 [ [ wlregoaxdy+120y i+ 08 [ [ ool fsof E P axd
i=0 0 Jo -0 0 Jo y
© 1 1
120y 6400 [ [yl lso P
i=0
+1292(1+1)9’f f A FO] [g0)] m@d dy
+246’ZZ(1+1)(1+2)9’f f A2 ][] af(x)ag(y)d dy -3
pr ox Oy
and
0 1 1 0 1 1
®% =90 9"+f‘ff 232 " dxdy — 180 el‘ff 232 “dxdy + 10.
ZOZO | L og00)™ dxdy ZO | R s dxdy +

2.9. El Ktaibi et al. [16]’s copulas
We consider the particular case in Section 2.7 for ¢(x,y) = f(x)f(y). For the copulas given by

_ Xy _ o i
o) = Tgrtape) = © 247 VIO

for 0 < x < 1,0 < y < 1, and suitable values of 8 and f, g in suitable functions, we have

L Ofy  9ry)
1=0f()f»)  [1-0fx)fO]
Ox 0f(x) N Oxy of(x)of(y)
o affmF 0% [1-6ff] 9x oy
| 200 fWfQ) 9f(x) 0f()
[1-6f0)f»)] ox oy
D] + oy Z(z + DO I O] ==

i=0

c(x,y) =

i f(y)
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i i+1 6f(x)
+9xZ(z+1)9 L] [f0)] Ox

8f (X) af(y)
“ay

i+1 (9f () df(y)
ay ’

+ Oxy Zm DO Lf O] O ==

2 i+ 1D+ 2 £ )

i=0

B =

ol
ol ()]

r=4 i i 6" fo | f @ dxdy

i=0 j

=0
EOWYE f f o Ll Lo 2
i=0
EONYER f f eyl o D gy
i=0

=0 j=
+40) > (j+ e f f SRl Lo O —‘9’;@ axay

i=0 j=0

N o1 Of (%) 0
+ 867 Z ]+1)(]+2)91+fff 2 [F O f )] ! J;i) g(y)dd ~1,

\.

o0 . 1 1 ) o0 . 1 1 ) ia
P:HZ@’f f XY[f(x)f(y)]’dxdy+1292(i+1)0’f f D O [F )] J(;(yy)d y
i=0

+1292(z+1)6’f f 2y [FO] o] 6f(x)d dy
1zez(z+1)e’ff 2[FOT [FO)] wwd dy
i=0

+24022(l+1)(l+2)91f f 2] f()’“af—i)@d dy -3

xay

S I 1 1 00 1 1
¥=90) Yo [ fo PRI ddy =150 ) fo fo R [FDF O] dady + 10.
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2.10. FGM type copulas [17, 18, 19, 24]

FGM type copulas are a class of bivariate copulas that provide a simple way to model dependence
between two random variables. FGM copulas are limited in capturing strong dependence but are valued
for their simplicity, interpretability, and suitability in modeling relationships with low to moderate
dependence. They are primarily used in theoretical studies and cases where simplicity outweighs the
need for flexibility in capturing tail dependence. For FGM type copulas given by

C(x,y) = xy[1 + ba(x,»)’ = xy ) (?)9" [a(x, )]
i=0

for0<x<1,0<y<1,p>0,-1<6<1anda(x,y) in a suitable function, we have

p-1 aa(x9 )’)
ox

p—2 9a(x,y) da(x, y)
0x ay

p-1 9alx, y)

c(x,y) = [1 + 6a(x,y)]" + Opx[1 + Oa(x,y)] %

+ 0py[1 + Ba(x, y)]

+ 6 p(p — Dxy[1 + fa(x, y)]

p-1 8261()6', }’)
0x0y

= (’?)9[ [a(x,y)]’+9px2(p l. )9‘ fax, ) 225
i=0

i par ox

< (p=1\.  dax,
+epyZ(p l. )9[ [ax. )] “f;;y)
i=0

(p _ 2)91 [a(x, y)]l 60()(:, )’) Ga(x, }’)
i 0x ay

+ Opxy[1 + Ba(x,y)]

+@p(p—Dxy Y.

0

)9" [a(x, y)]

1

+ Opxy i (p ;
i=0

—_ ]l

i aza(xa )’)
oxdy

1 1\[
I+6al=,=]|| -1
(a3l -

o0 1l o
Tz4ZZ(?)(?)9i+j L fo xy [a(x, )] dxdy
1 Al
()( )9’” f f X’y [a(x,y)]”j dedy
0 Jo ox
BN p\(p—1 HAflfl 2 i+jaa(x»y)
40 6/ , —~dxd
car SO0 [ [ e e
©  ® 1 Al
+492p(p—1)22(’;)(p ;2)9"“' fo j; 2y [a(x, )] aa((;;y )ﬁa(a);,y ) dxdy
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+49pZZ(I;)( B )0’”[ f x*y? [a(x, )’” a(x y) dxdy — 1,

i=0 j=0

1l
p= ( ) xy[a(x, y)]" dxdy
= 0 Jo

+129p2(p )Olf f x*y[a aéx y) dxdy
i=0
N P_l)iff 2 i da(x,y)
126 0 , dxd
+ p;( ; o) [a(x, y)] oy

o _o\ . Lo dalx, y) dalx,
+1262p(p—1)Z(p l. )el f f 2y [a(x, y)] “f;; ) “(a’; Y ixd

1=

— 2
+ 129pZ (p 1)6’[ f x*y? [a(x, )] 0 (X y) dxdy — 3,
i=0

and

N (P\P\ "
:902 (l)(j)elﬂvfo [) x*y? [a(x, V)] dxdy

i=0 j=0
= 1l
- 1802 p o' x*y? [a(x,y)] dxdy + 10.
izo \! 0 Jo

If p > 0 1is an integer then

C i S p_l i iaa(x’y)
c(x,w:Z( )9 fax. )] +9pr( l. )9 Jate, )] 2

i=0 i=0

Cip-1),  da(x,
+9py2(p l. )9’ [a(m)y%

p—2
-2\ . O ’ d ’
+ ezp(p — l)xyZ (P l )91 [a(x,y)]l a(a);y) Cl;}; y)

0
p-1 2
-1 i i 0 a(-x’ )
+9pxyZ(” l. )e [a(x, y)] ax—ayy
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2y &5 p - i+ l+j 861()6 y)
+49pZZ(Z_)( , )9 ]ffxy [a(x,y)]

i=0 j=0

2 Wi 0 )
+492p<p—1>z (1)(”. )9’+’ffxy [aCx, )] “f;;y) “f;;y)

i=0 j=0
— 2
| )elﬂffxy a1 S5y 1,

capy S )"

i=0 j=0

p 1l
= IZZ Pl xy [a(x,y)] dxdy
- 1 0 0
i=0
1 a(x,y)
+120p (p. )G’ffxya(x) ydd
(Pl j 9atx.y)
+126p ( )6”f f xy? (9): dxdy

i=

+1202p(p—1)2(p_. )9’f f X3y [a(x, )]  alx, y)aa(x y)dd
.X

i=0

1l 2
+ 129pZ (p 1)6”[ f x*y? [a(x, )] 0 a(x y) dxdy -3,
0o Jo

and

P
®2=9OZZ(1)( )0’”[ f x2y? [a(x, )| dxdy

i=0 j=
- ISOZ (p)H’f f x2y* [a(x, )| dxdy + 10.
iz \! D0

2.11. FGM type copulas [17, 18, 19, 24]

We consider the particular case in Section 2.10 for a(x, y) = ¢(x)y/(y). For the copulas given by

C(x,y) = xy[1 + 0p(x)p(y)]”
forO0<x<1,0<y<1,p>0,-1<86<1and ¢(x), ¥(y) in suitable functions, we have

c(x,y) = [1+ 6] + pogx)y [1 + 0] ‘g;y)

¢( ) Ip(x) I (y)

+ pOxy(y) [1 + 0 ()]

p-2 5¢(X) W(y)

+ p(p = DExyp(Y() [1 + g0y ()] oy

+ pbxy [1 + 6p(x)y ()] 3y
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- i( l)el [$(0] [w )] +p0yZ( . )9’ o™ [y ] === W(y)

i+1 (9(]5()6)

(9

+p9x2(” ; )el' [#Co] [w()]

i=0

+ poxy Z (p R )e‘ [6@)] [y ——

i=0

; 0¢(x) O (y)
0x 6y

] i+ i+ 0 0
+p<p—1>92xy2( )'[¢<x>]’ v 1%%

-

p\ ..
( 91+111,i+j,¢11,i+j,xp

B =

i+j
0 JIl,i+j+1,¢J2,i+j,¢

~
~.

i+j
0 JJZ,i+j,¢Il,i+j+1,¢

e 1D 1M
- S .
s
~. |
'

9 J21+]¢J21+]¢

+4p(p - D’ Z > (l)( P )9f+ffz,,-+j+1,¢Jz,i+j+1,w -1,

i=0 j=

= 22( )911,¢111¢+ 12p6

“1\ .
+ 12p62 (p ; )Hljz,i,¢ll,i+1,t//

-1\
( . )9111,i+1,¢J2,i,¢/
i=0

00 ~1\ . o -2\ .
+ 121792 (p ; )Hl-lz,i,aﬁJZ,i,t// + 12p(p - 1)6* Z (p ; )9’Jz,i+1,¢12,i+1,w -3

i=0

and

:9022(1)( )91 D siohisiu — 1802( )912,+,¢12,W+10

i=0 j=0
where
1
Im,n,wzf xm[‘p(x)]ndx
0
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and

If p > 0 is an integer then

c(x,y) = Zp:

i=0

p—] p_l
+p0xyZ( ;

”: (p; ) (6™ [v )]

I R €
Jnng = I} X" [o(x0)] de

i=0

(” R 1)6" (6] [w ()]

)9" (6] [y )] ——

(fi’)e" (o) [w(y>]"+pey2(p . )9’ [CO1™ w)] ===

p-1

+p9xZ

i+1 6¢(X)
ox

5¢(X) ()
Cdy

i+j
0 jll,i+j+1,¢~]2,i+j,¢//

i+j
0 ]J2,i+j,¢11,i+j+l,w

i+j
0 JJZ,i+j,¢J2,i+j,zp

)4 p-1
. —1\ .
p=12 Z (13)9’1 Lioliiy +12p6 Z (p ; )9’1 Lit1od2.iy
i=0 i=0

and

AIMS Mathematics

+ 12p6

+ 12p6

p-1
( . )9112,1',¢11,i+1,¢
i=0
p—1 - 1 p—2
( i )eljz,i,m,-,w 12p(p-1)6* Y
i=0 i=0

)

J=0

1)

01 121+J¢I2I+J(p 1802

i=0

i O (y)
dy

i+1 6¢(x) A48))

ay’

—2\ .
(p)(p J )91+JJ2,i+j+1,¢J2’i+j+1’w -L

-2\ .
(p ; )91J2,i+1,¢-]2,i+1,w -3

( )9 121+J¢I21+]zp + 10
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2.12. FGM type copulas [17, 18, 19, 24]

We consider the particular case in Section 2.10 for a(x, y) = ¥(x)y¥(y). For the copulas given by

C(x,y) = xy [1 + O]
forO0<x<1,0<y<1,p>0,-1<86<1andy in a suitable function, we have

1 0
c(@.y) = [1+ 0] + pay(y [1 + B )] %iy )

p-1 tﬁ( ) p-1 OY(x) O (y)

+ pOxy [1 + 0y () (y)] ax
p—2 O (x) O (y)

ox Oy

+ pOxy(y) [1 + 0y ()Y (y)]

+ p(p — DO xyp () [1 + 0y ((y)]

Z(l)el T [l + peyz( _ )9, Wl ol

1=

ﬁw(y)

_ , 0
+p0xZ(p l. )9’ ] o™ 25

i=0
090(96) W (y)
ay

i+1 (M (x) A (y)
oy

+p9xy2( . )9’ v v ==

Fotp- 1y Y (7 ol o

i=0

i=0 j=0 i=0 j=0
(9] (o) 1
S SO e
i=0 j=0 J
(o8] [ee) 2
+ap(p -y > (’l’ )(” )9”%/% iy = 1
i=0 j=0

[Se]

o= 122( )9'12 +24p92( - )eflml,wjz,w

-1\, > (p—-2) .
+ 12p02 (p ; )H’Jiw +12p(p — DG Z (p ; )Qlfim,w -3

i=0
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and

:905}5}(1)( )e’ﬂlg,w 1802( )9’1§,W+10.

i=0 j=0

If p > 0 1s an integer then

)4 p-1

c(x,y>=2(f)9" [p (o [w<y>]’+p0y2(p . )9’ @I v == W)
i=0 - » i=0

+p9x2(p l. )0" [T v

i=0

1 OY(x)
Ox

Sp-1),  OY(x) D
+p9xyZ(” l. )0' o ) SR

i=0

1 Bw(x) ()

P2 _
Fop= 08 3 (772 el o 2220,
i=0

p_ p-l
D\ i+jp2 P\(P = 1) yiss
. ( .)9 Yy + 8pO E (l)( j )9 s jrrg i ju

i=0 j=0 J i=0 j=0
p_ p-l
p\(P =1\ i p
R (P
i=0 j=0
p—2

)4 p-l
. -1\ .
p = 12 Z (?)6’[12’1"[# + 24[992 (p ; )9111,,'_,.1%.]2’,',;0

i=0 i=0
Sp-1 S(p-2
+12p0 R 12 —192§ Il U £
14 o ( i ) 2,10 P(P ) £ ( i ) 2,i+1,y

and

P P
2 _ p ) i 72
O =90 E E (l)(J)9+JIZz+W 180 E ( )HIZHW 10.

2.13. Chesneau [6]’s copula

For the copulas given by

C(x,y) = sin(rrx) sin(my)d(x + y)
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forO0 < x<1land 0 <y < 1, we have

c(x,y) = 7° cos(mx) cos(my)p(x + y) + mcos(mx) sin(ﬂy)qb' (x+y)

+ 7 sin(7rx) cos(ﬂy)qﬁl (x +y) + sin(mx) sin(ﬂy)qﬁ" (x+y),

B=4p()-1,

1 pl
T = 47° f f sin(7rx) sin(rry) cos(rrx) cos(my) [¢(x + y)]2 dxdy
o Jo
1l
+4n f f sin(rx) cos(mx) sin2(7ry)¢(x + y)r/J, (x + y)dxdy
0o Jo
1 pl
+4n f f sin?(x) sin(rry) cos(my)e(x + y)¢/ (x + y)dxdy
0o Jo

1 1
+4 f f sin’(7rx) sin®(7y)p(x + y)¢  (x + y)dxdy — 1,
0 0

1l
o= 1277 f f xy cos(mx) cos(my)p(x + y)dxdy
0 Jo
1l
+ 127 f f Xy cos(mx) sin(ﬂy)¢'(x+y)dxdy
o Jo
1l
+ 127 f f Xy sin(7rx) cos(ﬂy)¢' (x + y)dxdy
o Jo
1 pl )
+ 12 f f xy sin(zrx) sin(zy)¢ (x + y)dxdy — 3
0o Jo
and
1l 1 pl
®* =90 f f sin®(7rx) sin2(7ry) [o(x, y)]2 dxdy — 180 f f xy sin(rx) sin(my)é(x, y)dxdy + 10.
0o Jo 0o Jo

2.14. Chesneau [7, 8]’s copula
For the copulas given by
C(x,y) = X'y'¢(x,y)
for0 < x < 1,0 <y < 1and ¢(x,y) in a suitable function, we have
Op(x,y)
dy
+ X'y log xlog yp(x,y) + ¥y log yé(x, y) + 2"y p(x, )

a‘ﬁ(x’ y) (9(]5()(, y) + xy+1 x—1 a¢(x’ )’)
ay 0x Y 0x

c(x,y) = ¥y log xp(x, ) + (1 + )y d(x,y) + 27y

+ xX’y*logy + xX’y*log x
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2
N xyyxa P(x, y)’

0x0y
p = 2<z>(l l)—1,

1 1
T:4f f X1 1+2x10gx[¢()C y)] dxdy+4f f(l +x)x2y 1, 2x [¢(x y)] dxdy
0 0

1l
4 x2y—ly1+2x¢(x )(')d)(x .Y)

0 0

1 1
+4 f 22 ooy [¢(x, v)]F dxdy + 4 f f 2321 g(x, y)]* dxdy
0 0

1 1
+4 f xly 2x10gy¢(x y) ¢( y)d d +4f f x2yy2x10gx¢(x y) ¢( )’)

0 0

1l 00 (x.
+4 xzy”yz"_%(x,y)—(b( y)dxdy+4f f Ky p(x, y) ¢( y)d dy — 1,
ox 0 0 (9

0 0

dxdy + 4 f f 2y log xlog y [¢(x, )| dxdy

1 1 1 1
p=12 f f ¥y log x¢(x, y)dxdy + 12 f f (1 + X)Xy o(x, y)dxdy
0 0 0 0

[N 1l
0 09(x,
+12f f xyy2+x$dxdy+12f f ¥y og x log yo(x, y)dxdy
0 Jo Y 0 Jo

1l 1l
+12f f xy+2yxlogy¢(x,y)dxdy+l2f f Ky p(x, y)dxdy

+12f f xy+l x+11 a¢( y) 12f f x}+l x+11 ¢((9 y)

+12ff y+2x ¢( y)dd + y+1yx+1 ¢( y)d dy—3

0x0y

and

1 1
=90 f f Y [p(x, )] dxdy — 180 f f Yy g(x, y)dxdy + 10.
0 0

2.15. Linear combination of copulas

For the copulas given by

C(x,y) = Y wiCi(x,y)
i=1

forO<x<landO0 <y < 1, where Ci(x,y),i =1,2,...,n are valid copulas and w;, i = 1,2,...,n are
non-negative weights summing to 1, we have

c(x,y) = Z wici(x, ),
i=1
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T= 4 wwjffC(xy)dC(xy)
i=1 j=1
n 1 1
p=12 Wiffxydci(x,)’)—
; 0o Jo

and

9OZwa]f f Ci(x, y)Ci(x, y)dxdy—lSOZw,f f xyCi(x, y)dxdy + 10.

i=1 j=1

2.16. Power combination of copulas

For the copulas given by

Ceey) = | | 1€t ]
i=1

forO<x<1landO0 <y < 1, where Ci(x,y),i =1,2,...,n are valid copulas and w;, i = 1,2,...,n are
non-negative, we have

c(x.y) = Z Wi v — D) [Ci(e, )] dCi(x,y) 0Ci(x,y) rl [Cj(x, y)]w,-

i=1 dx Ay j=1,j#i
+ > wilCie " ey [ [cixn]”
i=1 J=1j#i
1 oC: (x y) wj—1 5Cj(x,y) &
[Cilx, )] 2 C b Crle, )™
+ Z wi [Cix,y ]Zﬁ, )] 5 kﬂe,-,,[ (9]

L 0C(x.y) OC;
T—4ZWI(WI‘UHII (Gl [c)y]” ﬂCz(x) (;;cy) I;;cy) xdy

J=1j#i
n

+4Zw, [ f f e S N (TSR

Jj=1j#i =1

n n n " n w aCi(x, aC i(x,
+4Zw, wi [ ff [Cie " [Ciae ] [ck(x,y)]k]_[[c[(x,y)]f%%y)dxdy—l,

Jj=1j#i k=1,k#i,j =1

AIMS Mathematics Volume 10, Issue 9, 22336-22381.



22362

T_IZZW'(W' D 1—[ ffxy[c(xy)]w g[el: y)]yvjac(xy)ac(xy)dd

ox
Jj=1,j#i y

+12Zw, 1_[ f f xy [Ci(xe, M]"™ 1 C(x y)] ci(x, y)dxdy

i=1 Jj=1,j#i

+122w, > [1 [ [ wicenrcn]” e CrD 0000, g

i=1 Jj=1,j#i k=1,k#i,j

and

1 1 n n _ 1 1 n
=90 fo fo [ 1] [1cicem1 [Ci6x ] dxdy - 180 fo fo xy [ [1Cix,)]" dxdy + 10.
i=1

i=1 j=1

2.17. Durante [13]’s copulas

For the copulas given by
Clx,y)=A (x",yg) B (xl_",yl_ﬂ)
forO0<x<1,0<y<1,0<a<1land0 < B < 1, where A and B are valid copulas, we have
c(x,y) = aBfx"yla (x“, yB) B (xl_“ yl_ﬁ)
A (x2,YF) 0B (x!-2, y1F)

+a(l -px* 'y ?*

ox® oy'-#
- 15
+(1- a)ﬁx_ﬁyﬁ_laA(a ﬁyﬁ) s (axl — )

+(1—a)(1 -B)x %y PA (x“,yﬁ) b (xl_“,yl_ﬂ) ,
B =4A(272F) B2 25 - 1,

0 :4a,8f1 fl x“_lyﬁ_la x®, P A(x“,yB) [B(xl - lﬁ)] dxdy
I~ y1-p
e e st YR YRS P

oy' -+
(9A V) 0B (x!, y!F
+4(1—a/)ﬁf f x At 8yﬂ ) ((9x1 — )A(x“,yE)B(xl_“,yl_ﬁ)dxdy
+4(1 —a)(1 - ﬁ)f f ~y '8 ]2b(xl_“,yl_ﬁ)B(xl_“,yl_ﬁ)dxdy— 1,

T= 120/ﬁf1 fl x“yﬁa (x",)ﬁ)B(xl_“,yl_ﬁ)dxdy
0o Jo
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vp [ fx SOALP)OB()
v 0x" alﬂ xay

—,5'
+12(1—a),8f f )68( — )dxdy

axl 7

+12(1 — a)(1 = B) f f xl-“yl-ﬂA (x*.5%) b (', y" ) dxdy - 3
0 0

=00 [ [ (a0 )] B ) daay

1 1
_ @ l-a 18
180f0 f xpA (x7,57) B ('™, y') dxdy + 10.

0

and

2.18. Durante et al. [15]’s copulas

For the copulas given by

|
C(x,y) = xf (}f 1(y))
forO<x<1,0<y<1landf:[0,o00] — [0, 1] as a surjective, monotonic function, we have

)df O

I
c(xy) = -=f ( o) o)

B =2f (2f—1 (%)) _1,
. o NdF) i
-4 f f ( s (y)) ( f <y>) U0V 1y -1,

_ Yy o N )
p=-12 fo fo Ly (;f <y>) £ 0)dxdy 3

1 1 2 1 1
_ 2 l -1 _ 2 l -1 )
_9of0 fo X [f(xf (y))] dxdy 180](: fo xyf(xf ()| dxdy + 10.

2.19. Kumar [23]’s perturbed copulas

and

For the copulas given by

C(x’)’) =xy+ta ['x_ B(X’)’)] [y - B(X’)’)]
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forO<x<1,0<y<1land0 <a <1, where B is a valid copula, we have

08B(x,
clx,y)=1 +a—czM
ox
B a@B(x, y) 2 0B(x,y) 0B(x,y)
ay ox ay

+ 2ab(x,y)B(x,y) —a(x +y) b(x,y),
11
g =afi-2s(3 z)]
1 1
= +a) —4a(l + a)f f w22 4
o Jo ox

1l 1l
—4a(l + a) f f xy—aB(x’ Y) dxdy + 8a(l + a) f f xy(')B(x, » 98 y) dxd
0 Jo dy o Jo ox Oy

1 pl 1 pl
+ 8a(l + a) f f xyb(x,y)B(x,y)dxdy — 4a(l + a) f f xy (x +y)b(x,y)dxdy
0 Jo

1 1
+4a(l + a)f f (x + y)B(x, y)dxdy — 4a* f f (x + Y)B(x, y)aB(x ) i dy
0 0

1 1
— 4 f f x4+ 9B ) 2EY ey + 8 f f (x4 ) Bx, y) 2N IBEY)
0 Jo dy 0 Jo ox dy

1l bt
+ 8 f f (x + Y)b(x, »)B(x, y)dxdy — 4a® f f (x +)” b(x, y)B(x, y)dxdy
o Jo 0 0

1l 1l
08B(x,
da(l + a) f f B*(x,y)dxdy — 4a® f f B*(x,y) Blx y)dxdy
0 Jo 0 Jo ox
1 1 0 , 1 1 P , P 3
-4 f f a*B(x,y) Blx y)dxdy+ 84> f f B(x,y) Blx,y) 0B(x y)dxdy
0 Jo dy 0 Jo ox dy

: ! 1 1
+3¢ [ [ benBendiy-aa [ oSy - 1
0 0 0 0

1 1
T = a+4ac(c - 1) - 4a(l +a)f f 0Bx.Y) 1
0 0 6x

1 1 a a 1 1
+ 8a(1 +a)f f xy B(x,y) B(gx’y)dxdy+8a(l +a)cf f xyb(x, y)dxdy

—4a(1+a)ffxy(x+y)b(x y)dxdy + 4a® f f( 53( 208 dxdy

- 84° f f( 6B(x Y) 68;;; y)d dy — 8a cf f(x+y)b(x y)dxdy

+4a2ff(x+y)2b(x,y)dxdy—4a ffag(”)
0 0
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1, 1l
+ 8a%2 f f 0B, 7) 0B&Y) o + 823 f f b(x, y)dxdy
0o Jo Ox dy o Jo
1 pl
—4a*c? f f (x +y) b(x,y)dxdy,
0 Jo

1l
0B(x,
p=31+a) - 12af f Xy Blx y)dxd
0 0 ax
1 1 0 , 1 1 P , P ,
- 12af f Xy Blx y)dxa’y + 24af f Xy Blx,y) 9B(x y)dxdy
0 Jo dy 0 Jo dx dy

1l 1l
+ 24a f f xyb(x, y)B(x, y)dxdy — 12a f f xy (x +y) b(x,y)dxdy — 3
0o Jo 0o Jo

and
= 904> f f — Bx, ] [y - B(x,y)|* dxdy.

2.20. Sharifonnasabi et al. [29]’s copulas

For copulas given by

C(x,y) = K(x,y)exp [04(x, y)]

forO0<x<1,0<y<1,-1<6<1and ¢(x,y) in a suitable function, where K(x,y) is a valid copula,
we have

8¢(x, y) (9(]5()6, y) + geed)(x,y) (9(]5()(3, y) (9K()C, }’)

c(x,y) = MK (x, y)

0x ay 0x oy
Ip(x,y) OK(x,y) ; &¢(x,y)
0 (x,y) 06(x.,y)
+ fe o PP + B¢ K(x,y) Iy
S0, » PK(x, )
oxdy

*—4K(1 1) 9(1 1)
Fr=akizz)exp|%|53
1 1
T =467 f f K(x,y)e29¢(x’y)K(x,y)a¢(x’y) ad)(x’y)dxdy
0o Jo Ox dy

1 1
+ 49f f K(x, y)e29¢(x,y) Op(x,y) OK(x,y) dxdy
0 0 Ox ay

1 1
K
+ 40f f K(x, y)e29¢(x,y) a¢(x’ Y) 8 (X, )’) dXd
0 Jo dy dx

+49j~l fl K2(x, y)e a0 SO0 Y)
0o Jo 0 5)’
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+4f f K(x, )ezezﬁ(xy)a K(x y)d dy — 1,

1 1 P , 0 ,
0 0 0x (9y

1 1
+ 129 f f xyeegﬁ(x,y) 6¢(x9 )’) 8K(x, Y) d.Xdy

X ay
+ 129f f PELERY 0p(x,y) OK(x, y)d oy
dy Ox

2
+129ffxye"¢m)1<( diatias ¢( ’y)

0’°K
+ 12f f xyee"’(”) (x y)d dy -3

and
1l 1l
=90 f f [K(x,y)]2 2 dxdy — 180 f f xyK (x, )e® ™ dxdy + 10.
0o Jo 0o Jo

2.21. Sharifonnasabi et al. [29]’s copulas
Consider a particular case of Section 2.20 for ¢(x,y) = f(x)g(y). For copulas given by
C(x,y) = K(x, y) exp [0f(x)g(y)]

for0<x<1,0<y<1,-1 <6< 1and f(x), g(y) in suitable functions, where K(x,y) is a valid
copula, we have

c(x,y) = PRV (x, ) g0 (0 () + 070 £ (1)) K LE) <x )

OK(x, y)
X

+ 90T 80) f(x)g (y) 0" (x)g(y)K(x,y)f'(x)g,(y)

ef(x)g(wa K(x,y)
oxoy

11 1
g = k(5 5)eve|or5)s 3|
1 1
¢ = 402 fo fo K(x, ) 0K (x, ) f0g0) f (08 0)dxdy

1 1
+ 46 f f K(x, y)eZHf(x)g()’)f/ (X)g(y)@d-)‘:dy
0 Jo y

1 pl
’ K
+ 406 f f K(x, y)elﬁf(X)g(y) f(x)g (y)wd)“ly
0 0 X
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1 1
“wf f K*(x, )@ 80 £ (x)g' (y)dxdy
0 0

1l 2
+4 f f K(x, y)e29f(X)g(y)M dxdy — 1,
0 0 axay

S|

p=126° fo fo xye” BOK (x, y) f(0)gW) f (x)g ()dxdy
1 pl

+ 1260 f f xyef (s f'(x)g(y)dedy

+ 129f f xyegf(X)g(Y)f( )8 (y)aK(x .Y)

+ 1260 f f xyegf e g e, nf '(x)g/ (y)dxdy

+ 12f f xyegﬂx)g(’)a K(;C y)d dy -3
y

dxdy

and
1 1 1 1
=90 f f [K(x,y)]? 28D dxdy — 180 f f xyK (x, )e”’ 8 dxdy + 10.
0 0 0 0

2.22. Sharifonnasabi et al. [29]’s copulas
Consider a particular case of Section 2.20 for ¢(x,y) = f(x)f(y). For copulas given by
C(x,y) = K(x,y)exp [0 (x) f (V)]

forO0<x<1,0<y<1,-1<6<1and f in a suitable function, where K(x,y) is a valid copula, we
have

c(x,y) = 8O K(x, ) SO O f () + 0™ OTO () £y )5K<x Y)

(y)

+ 0”0 £(x) f () ——2 + 9T OK (x, ) f () f ()

IEOF) OK(x,y)
0x0y

1 1 1
g =45 5)eve]on(3)]
1 1
¢ = 402 fo fo Kt ) OK (e, ) F0)f0)f (0 ()dxdy

1 1
s
0 Jo y
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and

1 1
+ 40 f f K(x,)e 0K(x,5)
0o Jo 0x

1 1
+ 46 f f K2(x, )10 £ (x) £ (y)dxdy
0 0

1 1 2
4 f f K(x.y) ezef(x)f(y)a K@.y) dxdy — 1,
0 0 axﬁy

+120 f f eI (1)

dxdy

1 1
= 1262 f f WO K (x, ) F)F ) (O f (dxdy

+126 f f Xy DI £ x) f'(y)dedy
0o Jo ox

1 pl
+ 126 f f xye” IO K (x, ) f (x) f (y)dxdy

K
L D2 f f xyeﬁf(X)f(y)a @) redy -3
0xay

PN [N
=90 f f [K(x, )] 20 dxdy — 180 f f xyK (x, y)e”” D0 dxdy + 10.
o Jo o Jo

2.23. Sharifonnasabi et al. [29]’s copulas

For copulas given by

C(x,y) = K(x, ) [1+06(x, 1) = K(x,) Z( )el o(x, ]

forO0<x<1,0<y<1,-1<6<1, p>0and ¢(x,y) in a suitable function, where K(x,y) is a valid

copula, we have

c(x,y) = [1+0¢(x, »)]"

AIMS Mathematics

PK(x,y)
0xoy

N QpaK gyc y) 8¢(9; y)

O0K(x,y) 0p(x,y)
ox oy

P P(x,y)
0x0y

[1+6¢(x, »)]""

+6p [1+ 6¢(x, )]

+ 6pK(x, ) [1+6¢(x, )]

+6p(p — DK(x,y) [1 + 0¢(x,y)]"

-2 a¢(x, )’) (9¢(x, )’)

0x ay
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— 1), s 0K (x,y) (x,
vopy pi )Ql[d)(x’y)] gyc ) ¢((;;y)

-1\ . 0K (x,y) 0o(x,
+9p2 pi )gl[(b(x’y)]l (;iy) ¢g;y)

= (p-1), . Po(x,
vop Y (77 )9‘ [# ] Kry o

- (P -2\, ; Ap(x,y) Op(x,y)
+92p(p—1>2( l. )0 (e D Kx ) =2 ==

0 1 1
T 422(1)(’;)9‘” [ [ o ko oL L

i=0 j=
N . OK(x,y) 0
Z p‘ P_Qlﬂff [6Ce )™ K(x,y) (xy) ¢éxy)dd
j=0
SN [ [ ey K(m)‘?K(;x’y) WD g
j=0 J 0 0 X 'y

_ 1 1 o 2
. p'giﬂf f [0 ] K23 28D g
J 0 Jo (?x8y

AN p_2 p i+ ! : i+j a¢(an)a¢(xay)
+492p<p—1>_22( l. )(j)e , fo fo (eI K3 y) == ndxdy — 1.

- : ! ! i 62K X,
p=12 (I? )0’ f f xy [¢(x, )] a( y)dxdy
=0 l 0 0 x@y

-1\, 0K (x,) 94 (x,
c120p Y (77N [ [ wvteenl TR Dy
1 1
c120p > (P o f f xy (¢ )] 6K(x’y) 6¢(8);’y)dxdy
DY o [ [ wtont ke 25Dy

EL Y [ [ ot ks p 2D 20D g s
y
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and

=900, (‘f( )9 f f [KCe ) [90x )] dxdy

i=0 j

[

- 1802( )9’ f f xyK(x,y) [¢(x, y)]' dxdy + 10.

i=0

If p > 0 1is an integer then

C(x,y) = K(x,y) Z( )91 e

4 . K (x,
cry) =y (’f )9‘ [p(x. )] 8;;; )
i=0
Ep-1\ ., L 0K (x, y) 0(x,
vop ) |" )9’[¢<x,y>] Pl
i=0
il 1 K (x,y) 0(x,
wop 3 (77 o oty HEED A
i=0
Ep-1 Po(x,
rop (7 )9’ [$x 9] K, ) ;’;;yy)
i=0
p-2

-2\ . . Ao(x. y) (.,
+6°p(p=1) (p . )el (e K,y LN )
0 ! ox 0y

i=

4Zp:i A R RLCCSIREE )2 (”)
= i\ ¢ X )]
i=0 j=
p-l p
p i+ OK(x,y) 0¢(x, y)
+49p _ g”’]f f ¢(X y) ]K( )
i=0 ; l J (9y ox
p-1 p 1 ol » 0K (x.y) db(x.
i=0 j=0
p-l p
+46p Z p;l I;Qlﬂf f [60e ] K2 (x, y) 220 Y) f/’( y)
i=0 j=0

p=2 p 1 pl
vatpp -0 3 (77 e [ [¢(x,y>]"”'K2<x,y)‘9¢("’” WD vy -1,
. J 0 Jo Ox dy

14 1 1 2
P i iaK(-x’y)
p=12) (l.)e fo fo ol ] 5 S dxay
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p-1 1 1
-1\ . 0K
— i o Jo ay ox
p-1 1 1
-1\ . 0K 0
120p (P77 e f f xy [¢(x, )] ;x’ ) ¢(8x, ) dxdy
1 X

(=]

—_

_ 2
v0p S (P! ffxy¢<xy) K(x)"“”)

i=

p—2
1200 3 (P2 [ [ ot Ky DD 11y,
pr 0o Jo dx dy

S

(=)

and

p P 1 1 o
v =00y S (7))o [ [ ke Lo axas
i 0

i=0 j=
)4 1 1

~180 ' (P xyK(x, y) [6(x, )] dxdy + 10,
iz \! 0 o

2.24. Sharifonnasabi et al. [29]’s copulas
Consider a particular case of Section 2.23 for ¢(x,y) = f(x)g(y). For copulas given by

C(x.y) = Ky [1+6f (g0 = K(x, y)Z( )el [F)g)]

forO<x<1,0<y<1,-1<608<1,p>0and f(x), g(y) in suitable functions, where K(x,y) is a
valid copula, we have

0*K(x,y)
0x0y

c(x,y) = [1+0f(x)g»]”

+6p ﬁK(x y)

F g [1 +6f(x)gm]”
oK (x y)

+6p fg [ +8f (g

+ 9p1<<x, N g O [1+8fx)g0]”!
+@p(p — DK, [1+0f ()] F(0)g0f (0g )

N (P  PK(x,y)
= (prewsor 55

+9pZ(” R )91 [F(0g0] 2

+op ) (” ; )91 sl KX rog o)

1
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SR o 1 1 " 62[{ ’
T=4)), (f )(’;)9’ 0 fo [0 Kx,y) 0;;;” dxdy

0 _1 o 1 1 » aK , i
ST [ o ken R wgmidxdy
= 0 Jo y

) _ 1 o 1 1 » aK , ,
ST [ s ken 5 g oy
= 0o Jo X

0 -1 o 1 1 L , ,
+ 4017_2 2\ I; 6" fo fo Lf (g™ K*(x, 9)f (x)g (v)dxdy

© -2 o 1 1 o , ,
+46p(p - 1)22(" . )(?)9 fo fo [Fg0]™ K23 f)g0)f ()8 G)dxdy = 1,

o ) 1 1 a2K ,
p=12 (17)9, f f o F@0)] 5 Sy
P 0 Jo xQy

-1\ ([  OK(x,)
+120p ) (7o fo fo xy [fg)] ;; D £ (x)gr)dndy

-1\, . 0K (x, ,
c120p Y (7o [ [ oo S rg oy

-1\ . 1 1 ) , ,
c120p Y ("7 [ [ Lo Keeos oo Grdsay

0 _ 2 . 1 1 ) , ,
+126°p(p - 1) (p ; )9’ fo fo xy [f(0g] K(x, ) f(0)g)f (x)g (y)dxdy — 3
=0

1
and

o =90ii(?)(?)¢” fo | fo K g0 ddy

i=0 j=0

o 1l .
- 180 (?)Hifo‘ f(; xyK(x,y) [f(x)g] dxdy + 10.
=0

1
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If p > 0 1s an integer then

C(x.y) = K(x, y)Z( )91 FONOIE

0°K
mw:ZG%m>ola§”

+6p ; ¢ [f(x )g(y)] f (0)g()
i=0
p-1
—1
vop > (P sz
i=0
p—l p _ 1
+06p ; ¢ [f(0)g] K(x, ) f (g ()

p—2
+6p(p—1) ( . )91 [ (8] K(x,y) ()80 f (28 (),

i=0

p p
T4Z§Xxﬁwjlffmwwwxw s
i=0 j=
p=1 p
N i?Wfffmmew Y £ (x)gv)dxdy
i=0 j=0
SR P —L\(P),s e i+j O0K(x,y) ’
3N L U [fDem)]™ K(x,) f()g ()dxdy
i=0 j=0 ! J 0 Jo dx
P—lpp_lp_lll o ) )
waop > > (7| [f(g)] K> (e, ) f (08 ()dxdy
— £ l J o Jo
i=0 j=0
p=2 p ) ol o ) )
+48p(p—1) ) (pi )(1;.)9’“ fo fo Lf)eM]™ K>(x, ) f(0)gO)f (x)g (dxdy 1,

1 1 62
fwﬂﬂ) “”
0 0

p-1 _
+ 129p2(p. )9‘ f f xy f(x)g(y) f (x)g(y)dxdy
i=0

=3[l

1

120p S (” N )el f f o g0 KD o (i

i=
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¢ f f w0 [ K(xy)f (g (0)dxdy

+
[E—
S
<
. ]
M
—_—
“B
[E—
I\J S—

+1292p(p—1) (p B )9’ f f Xy [F)gM] K,y f(0g0)f (0)g (v)dxdy — 3

and

)4 14 1 1 o
v =90y Y (e [ [ ik Lroenl dway
P P\ . 1 1 )
—1802(i)0‘ fo fo xyK(x,y) [f(0)g()] dxdy + 10.
i=0

2.25. Sharifonnasabi et al. [29]’s copulas
Consider a particular case of Section 2.23 for ¢(x,y) = f(x)f(y). For copulas given by

C(x.y) = Ky [1+0ff0)] = K(x,) Z( )0, [F@f]

for0<x<1,0<y<1,-1 <6< 1, p>0and f in a suitable function, where K(x,y) is a valid
copula, we have

0*K(x,y)
0x0y

F L[ +6fx)f»)"

c(x,y) = [1+0f(x) fM]°
é‘K ( )

6K(x y)f( VO [1+0fx)fO]!

+ epK(x, W @F ML +0ffm]
+ 6 p(p — DK, ) [1+ 0 fO]" 7 FROFOf ) f )

& 2
Z(,)"’ O] aK(x Y

rop S (P e treoson

rop (7o ot KD o )

-1\ . ; , ,
+op > (77 Lr ol K@ s @f o)

> (p-2\ . . .,
+6p(p - 1)Z(p ; )9’ [ fO] K, ) fD)f (x0)f ),
i=0
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ool

T=4ii(?)(’;)9”" | | | Lo Ko Dy
o (P = 1\(P) i i
> e f f [FfOI KK
o (P = 1\(P) e i
2 [ [ veoron ke

o -1 L " , ,
waop ) > (7))o fo fo FOFOIT Ky (Of ()dxdy

f ()f(y)dxdy

~

f (0 f (dxdy

o (P=2\P\ i v N
+46°p(p - 1)22(” . )(5’)9 fo fo LA™ K200 Q) (0 f 0y =1,

© ) 1 1 azK ,
p=12) (M) [ [ wiroror S35 ax
P l 0 0

+129pi pl__l ff

1
o (P [ [ otreoror 2 o oay

~1\ . , D
N fo fo £SO K (0f ()dxdy

[0

_ 2 ] 1 1 . , ,
+ 126 p(p - 1)2(’” l. )9’ [ [ o rwsor ke emrms wf iy -
i=0

and

D% (’f)( 1)9’“ f f (K0P [0S0 dxdy

i=0 j=0

- 1802()9’[ f xyK(x,y) [f(x) f0)] dxdy + 10.

1=

If p > 0 1is an integer then

C(x,y) = K(x, y)Z() FROfO
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92
c(x,y)=2(” ) O] K(x Y
vop S (P T N roronr KL ¢ i)

-1
N A,

N =
[
_ O

-1
+op S (P70 LForo) Ky f (of &)

p—2
+&p(p-1) ( . )9’ [FCOLO] K ) F@)LOV ) 0

i=0

T:‘éi(,)(f )9‘” f f s Ky A Dy

P
cap 3 (PO [ [ s ke ®™
j j=0

f (x)f(y)dxdy

~
~

\or+i f f O K 258D 0 F ()

+
&
A
[
ngh
BS]
~
L
~ T

+
)
S
=
|
-
<

1 Al o , ,
"o f f O K290 f (O f ()dxdy

+46p(p-1) Z(p 2)( )9’“ f f [OOSR f0fO)f (0 f (dxdy — 1,

i=0

~1
F120p (7 f f o) K ”f( ) )dxdy

p=12Y (") [ [ wirsor TaoDaay
-1

-1\ . ; 0K (x, ,
o3 (7o [ stroson D s vay

-1\ . 1 1 ) , ,
+ 126p P~ e fo fo xy [f0)fD] K(x, ) f (0 f ()dxdy
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and

@2:902

p
i=0

Z(If)(?)ef fo fo [KCe )P [F @S0 dxdy
=0

J

p 1l '
—180 ) (Mo | | oG F@F0N dady + 10.
iz \! U0

2.26. Gaussian copula

A Gaussian copula is a statistical tool used to model and describe the dependence structure between
two variables by linking their marginal distributions through a bivariate normal distribution. For the
Gaussian copula given by

Clx,y) = Oy (7' (), 07" (1)

forO0<x<1land 0 <y < 1, where

X X 2
O(x) = f_w o(t)dt = \/%_ﬂ f_w exp (—%) dt

and
y X 1 Yt s> = 2pst + 12
Dy(x,y) = f f dy(s, t)dsdt = —f f exp [—— dsdt,
—00 J-o 241 = p? J-c0 J-o0 2(1-p?)
we have
e (@), 7' ()
Cc(X, = 5
V@00 @1()
L2
B° = —arcsinp,
g
2 .
T = —arcsinp,
Vs
6 . p
o= p arcsin 5
and

1 1
®* = 90 fO fo [ (07 (0, 7' () - x| dxdy.
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2.27. Student’s t copula

The Student’s t copula is a bivariate copula derived from the Student’s ¢ distribution, used to model
dependence structures with tail dependence, allowing for stronger correlations in the tails compared to
the Gaussian copula. For the Student’s 7 copula given by

Clx.y) =T (T,' (0.7, ()

forO0<x<1land 0 <y < 1, where

X T a+l X 2 *%1
Ta(x):f ta(t)dt:ﬁf (1+t—) dt
o \/_r(%) a
and
a+2 s =2pst+ 2|
Ty(x,y) = f f (s, dsdt = anF % \/1__f f [ 20— dsdt,
we have
C B(1.7'0)
) = A R (T 0)
B =4T,(0,0) - 1,
L el 2 (1 (0. T;' )
_ -1 -1 _
T”Lﬂ“mmnwwmwawWWL
0 I xyis %mTﬂmdd X
jﬂfr(T%mra”@»xy_
and

1 1
- 90 fo fo |72 (77 . 7, ) - | dxdy.

3. Conclusions
In this paper, we have provided general expressions for Blomqvist’s 8, Kendall’s 7, Spearman’s p
and Hoeffding’s ®? for twenty-seven families of bivariate copulas. These general expressions can be

used to derive a wide class of closed form expressions. For example, if C is the standard FGM copula
then ¥(x) = 1 — x in Section 2.12. By noting that

1
Lny :f X"A=-x)"dx=Bm+1,n+1)
0
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and
1
Iy = —f X"1=-x)"dx=-Bm+1,n+1),
0

we see that Section 2.12 gives explicit expressions for the four dependence measures. If C is the copula
due to Shih and Emura [31] then /(x) = (1 — x”)? in Section 2.12. By noting that

m+1

1
1

Im,n,w:f X" (L= x")"dx = —B( ,nq+1)
0 p

and
: m
Jnny = —Pq f XL = )M dx = —qB(— +1,(n+ l)q),
0 P
we see that Section 2.12 gives explicit expressions for the four dependence measures.
Future work is to derive expressions for dependence measures for multivariate copulas, complex
variate copulas, matrix variate copulas and fuzzy copulas.
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