Research article

Generalized representations, deformations and extensions of 3-Lie superalgebras

  • Published: 26 September 2025
  • MSC : 17B10, 17B56, 17A42

  • In this paper, we introduced generalized representations of 3-Lie superalgebras, which are associated to generalized semidirect product 3-Lie superalgebras. We also developed the corresponding cohomology theory and generalized one-parameter formal deformations. Furthermore, we proved that the infinitesimals and the extensibility of finite-order deformations of generalized one-parameter formal deformations are controlled by the new first and second cohomology groups, respectively. At last, we described split and non-split Abelian extensions by generalized semidirect products and Maurer-Cartan elements, respectively.

    Citation: Junxia Zhu, Rongsheng Ma. Generalized representations, deformations and extensions of 3-Lie superalgebras[J]. AIMS Mathematics, 2025, 10(9): 22314-22335. doi: 10.3934/math.2025994

    Related Papers:

  • In this paper, we introduced generalized representations of 3-Lie superalgebras, which are associated to generalized semidirect product 3-Lie superalgebras. We also developed the corresponding cohomology theory and generalized one-parameter formal deformations. Furthermore, we proved that the infinitesimals and the extensibility of finite-order deformations of generalized one-parameter formal deformations are controlled by the new first and second cohomology groups, respectively. At last, we described split and non-split Abelian extensions by generalized semidirect products and Maurer-Cartan elements, respectively.



    加载中


    [1] H. B. Amor, G. Pinczon, The graded Lie algebra structure of Lie superalgebra deformation theory, Lett. Math. Phys., 18 (1989), 307–313. https://doi.org/10.1007/BF00405262 doi: 10.1007/BF00405262
    [2] R. Bonezzi, O. Hohm, Leibniz gauge theories and infinity structures, Comm. Math. Phys., 377 (2020), 2027–2077. https://doi.org/10.1007/s00220-020-03785-2 doi: 10.1007/s00220-020-03785-2
    [3] N. Cantarini, V. G. Kac, Classification of simple linearly compact $n$-Lie superalgebras, Commun. Math. Phys., 298 (2010), 833–853.
    [4] Y. L. Daletskiĭ, V. A. Kushnirevich, Inclusion of the Nambu-Takhtajan algebra in the structure of formal differential geometry, Dopov. Nats. Akad. Nauk Ukraïni, 1996, 12–18.
    [5] M. De Wilde, P. Lecomte, Formal deformations of the Poisson Lie algebra of a sympletic manifold and star-products, existence, equivalence, derivations, In: Deformation theory of algebras and structures and applications, NATO ASI Series, Vol. 247, Springer, Dordrecht, 1988. https://doi.org/10.1007/978-94-009-3057-5_18
    [6] B. Guan, L. Chen, Y. Ma, On the deformations and derivations of $n$-ary multiplicative Hom-Nambu-Lie superalgebras, Adv. Math. Phys., 2014, 1–9. https://doi.org/10.1155/2014/381683 doi: 10.1155/2014/381683
    [7] A. Kotov, T. Strobl, The embedding tensor, Leibniz-Loday algebras, and their higher gauge theories, Commun. Math. Phys., 376 (2020), 235–258. https://doi.org/10.1007/s00220-019-03569-3 doi: 10.1007/s00220-019-03569-3
    [8] Y. Li, A. M. Cherif, Y. Xie, Characterization of Ricci solitons and harmonic vector fields on the Lie group $Nil^4$, Mathematics, 13 (2025), 1–8. https://doi.org/10.3390/math13071155 doi: 10.3390/math13071155
    [9] J. Liu, A. Makhlouf, Y. Sheng, A new approach to representations of 3-Lie algebras and abelian extensions, Algebr. Represent. Theory, 20 (2017), 1415–1431. https://doi.org/10.1007/s10468-017-9693-0 doi: 10.1007/s10468-017-9693-0
    [10] W. Liu, Z. Zhang, $T^*$-extension of $n$-Lie algebras, Linear Multilinear Algebra, 61 (2013), 527–542. https://doi.org/10.1080/03081087.2012.693922 doi: 10.1080/03081087.2012.693922
    [11] Y. Liu, L. Chen, Y. Ma, Hom-Nijienhuis operators and $T^\ast$-extensions of hom-Lie superalgebras, Linear Algebra Appl., 439 (2013), 2131–2144. https://doi.org/10.1016/j.laa.2013.06.006 doi: 10.1016/j.laa.2013.06.006
    [12] J. L. Loday, B. Vallette, Algebraic operads, Springer, Heidelberg, 2012. https://doi.org/10.1007/978-3-642-30362-3
    [13] Y. Ma, L. Chen, On the cohomology and extensions of first-class $n$-Lie superalgebras, Commun. Algebra, 42 (2014), 4578–4599. https://doi.org/10.1080/00927872.2013.822877 doi: 10.1080/00927872.2013.822877
    [14] S. Mabrouk, A. Makhlouf, S. Massoud, Generalized representations of 3-Hom-Lie algebras, Extracta Math., 35 (2020), 99–126. https://doi.org/10.17398/2605-5686.35.1.99 doi: 10.17398/2605-5686.35.1.99
    [15] M. Rotkiewicz, Cohomology ring of $n$-Lie algebras, Extracta Math., 20 (2005), 219–232.
    [16] L. Tian, B. Guan, Y. Ma, On the cohomology and extensions of $n$-ary multiplicative Hom-Nambu-Lie superalgebras, Adv. Math. Phys., 2020, 1–17. https://doi.org/10.1155/2020/1961836 doi: 10.1155/2020/1961836
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(314) PDF downloads(22) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog