In this paper, we introduced generalized representations of 3-Lie superalgebras, which are associated to generalized semidirect product 3-Lie superalgebras. We also developed the corresponding cohomology theory and generalized one-parameter formal deformations. Furthermore, we proved that the infinitesimals and the extensibility of finite-order deformations of generalized one-parameter formal deformations are controlled by the new first and second cohomology groups, respectively. At last, we described split and non-split Abelian extensions by generalized semidirect products and Maurer-Cartan elements, respectively.
Citation: Junxia Zhu, Rongsheng Ma. Generalized representations, deformations and extensions of 3-Lie superalgebras[J]. AIMS Mathematics, 2025, 10(9): 22314-22335. doi: 10.3934/math.2025994
In this paper, we introduced generalized representations of 3-Lie superalgebras, which are associated to generalized semidirect product 3-Lie superalgebras. We also developed the corresponding cohomology theory and generalized one-parameter formal deformations. Furthermore, we proved that the infinitesimals and the extensibility of finite-order deformations of generalized one-parameter formal deformations are controlled by the new first and second cohomology groups, respectively. At last, we described split and non-split Abelian extensions by generalized semidirect products and Maurer-Cartan elements, respectively.
| [1] |
H. B. Amor, G. Pinczon, The graded Lie algebra structure of Lie superalgebra deformation theory, Lett. Math. Phys., 18 (1989), 307–313. https://doi.org/10.1007/BF00405262 doi: 10.1007/BF00405262
|
| [2] |
R. Bonezzi, O. Hohm, Leibniz gauge theories and infinity structures, Comm. Math. Phys., 377 (2020), 2027–2077. https://doi.org/10.1007/s00220-020-03785-2 doi: 10.1007/s00220-020-03785-2
|
| [3] | N. Cantarini, V. G. Kac, Classification of simple linearly compact $n$-Lie superalgebras, Commun. Math. Phys., 298 (2010), 833–853. |
| [4] | Y. L. Daletskiĭ, V. A. Kushnirevich, Inclusion of the Nambu-Takhtajan algebra in the structure of formal differential geometry, Dopov. Nats. Akad. Nauk Ukraïni, 1996, 12–18. |
| [5] | M. De Wilde, P. Lecomte, Formal deformations of the Poisson Lie algebra of a sympletic manifold and star-products, existence, equivalence, derivations, In: Deformation theory of algebras and structures and applications, NATO ASI Series, Vol. 247, Springer, Dordrecht, 1988. https://doi.org/10.1007/978-94-009-3057-5_18 |
| [6] |
B. Guan, L. Chen, Y. Ma, On the deformations and derivations of $n$-ary multiplicative Hom-Nambu-Lie superalgebras, Adv. Math. Phys., 2014, 1–9. https://doi.org/10.1155/2014/381683 doi: 10.1155/2014/381683
|
| [7] |
A. Kotov, T. Strobl, The embedding tensor, Leibniz-Loday algebras, and their higher gauge theories, Commun. Math. Phys., 376 (2020), 235–258. https://doi.org/10.1007/s00220-019-03569-3 doi: 10.1007/s00220-019-03569-3
|
| [8] |
Y. Li, A. M. Cherif, Y. Xie, Characterization of Ricci solitons and harmonic vector fields on the Lie group $Nil^4$, Mathematics, 13 (2025), 1–8. https://doi.org/10.3390/math13071155 doi: 10.3390/math13071155
|
| [9] |
J. Liu, A. Makhlouf, Y. Sheng, A new approach to representations of 3-Lie algebras and abelian extensions, Algebr. Represent. Theory, 20 (2017), 1415–1431. https://doi.org/10.1007/s10468-017-9693-0 doi: 10.1007/s10468-017-9693-0
|
| [10] |
W. Liu, Z. Zhang, $T^*$-extension of $n$-Lie algebras, Linear Multilinear Algebra, 61 (2013), 527–542. https://doi.org/10.1080/03081087.2012.693922 doi: 10.1080/03081087.2012.693922
|
| [11] |
Y. Liu, L. Chen, Y. Ma, Hom-Nijienhuis operators and $T^\ast$-extensions of hom-Lie superalgebras, Linear Algebra Appl., 439 (2013), 2131–2144. https://doi.org/10.1016/j.laa.2013.06.006 doi: 10.1016/j.laa.2013.06.006
|
| [12] | J. L. Loday, B. Vallette, Algebraic operads, Springer, Heidelberg, 2012. https://doi.org/10.1007/978-3-642-30362-3 |
| [13] |
Y. Ma, L. Chen, On the cohomology and extensions of first-class $n$-Lie superalgebras, Commun. Algebra, 42 (2014), 4578–4599. https://doi.org/10.1080/00927872.2013.822877 doi: 10.1080/00927872.2013.822877
|
| [14] |
S. Mabrouk, A. Makhlouf, S. Massoud, Generalized representations of 3-Hom-Lie algebras, Extracta Math., 35 (2020), 99–126. https://doi.org/10.17398/2605-5686.35.1.99 doi: 10.17398/2605-5686.35.1.99
|
| [15] | M. Rotkiewicz, Cohomology ring of $n$-Lie algebras, Extracta Math., 20 (2005), 219–232. |
| [16] |
L. Tian, B. Guan, Y. Ma, On the cohomology and extensions of $n$-ary multiplicative Hom-Nambu-Lie superalgebras, Adv. Math. Phys., 2020, 1–17. https://doi.org/10.1155/2020/1961836 doi: 10.1155/2020/1961836
|