In a soft environment, various structures associated with sets and topological spaces have been rigorously analyzed, including soft open (closed) sets, soft separation axioms, soft connectedness, and so on. The practical applications of soft set theory underscore its significant impact on real-world problems, offering innovative solutions that enhance decision-making processes across diverse domains. In this study, we built upon existing research by introducing new concepts within the realm of soft spaces, which served as an extension of classical topology. Our focus was on soft isolated sets and soft dense sets (spaces) in themselves. We investigated the fundamental properties and characterizations of these concepts, bolstered by rigorous proofs of theorems and relevant counterexamples. We explored the interrelations between these concepts and the notion of soft closure. Additionally, we showed that a soft topology was classified as soft dense in itself if, and only if, each of its parametric topologies was similarly classified. We also examined the behavior of soft dense spaces in themselves under various operations, including the formation of soft subspaces, the soft topological sum, and the image and inverse image under specific soft mappings.
Citation: Amlak I. Alajlan. Denseness of soft spaces[J]. AIMS Mathematics, 2025, 10(9): 22294-22313. doi: 10.3934/math.2025993
In a soft environment, various structures associated with sets and topological spaces have been rigorously analyzed, including soft open (closed) sets, soft separation axioms, soft connectedness, and so on. The practical applications of soft set theory underscore its significant impact on real-world problems, offering innovative solutions that enhance decision-making processes across diverse domains. In this study, we built upon existing research by introducing new concepts within the realm of soft spaces, which served as an extension of classical topology. Our focus was on soft isolated sets and soft dense sets (spaces) in themselves. We investigated the fundamental properties and characterizations of these concepts, bolstered by rigorous proofs of theorems and relevant counterexamples. We explored the interrelations between these concepts and the notion of soft closure. Additionally, we showed that a soft topology was classified as soft dense in itself if, and only if, each of its parametric topologies was similarly classified. We also examined the behavior of soft dense spaces in themselves under various operations, including the formation of soft subspaces, the soft topological sum, and the image and inverse image under specific soft mappings.
| [1] |
L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. http://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
|
| [2] |
Z. Pawlak, Rough sets, Int. J. Inform. Comput. Sci., 11 (1982), 341–356. https://doi.org/10.1007/BF01001956 doi: 10.1007/BF01001956
|
| [3] |
D. Molodtsov, Soft set theory-first results, Comput. Math. Appl., 37 (1999), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5 doi: 10.1016/S0898-1221(99)00056-5
|
| [4] |
P. K. Maji, A. R. Roy, R. Biswas, An application of soft sets in a decision making problem, Comput. Math. Appl., 44 (2002), 1077–1083. http://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
|
| [5] |
P. K. Maji, A. R. Roy, R. Biswas, Medical diagnosis for the problem of Chikungunya disease using soft rough sets, AIMS Math., 8 (2023), 9082–9105. https://doi.org/10.3934/math.2023455 doi: 10.3934/math.2023455
|
| [6] |
M.G. Voskoglou, A Combined use of soft sets and grey numbers in decision making, J. Comput. Cogn. Eng., 8 (2023), 1–4. http://doi.org/10.47852/bonviewJCCE2202237 doi: 10.47852/bonviewJCCE2202237
|
| [7] |
O. Dalkılıç, N. Demirtaş, Algorithms for Covid-19 outbreak using soft set theory: Estimation and application, Soft Comput., 27 (2022), 3203–3211. https://doi.org/10.1007/s00500-022-07519-5 doi: 10.1007/s00500-022-07519-5
|
| [8] | M. Shabir, M. Naz, On soft topological spaces, Comput. Math. Appl., 61 (2011), 1786–1799. http:https://doi.org/10.1016/j.camwa.2011.02.006 |
| [9] |
N. Çağman, S. Karataş, S. Enginoglu, Soft topology, Comput. Math. Appl., 62 (2011), 351–358. http://doi.org/10.1016/j.camwa.2011.05.016 doi: 10.1016/j.camwa.2011.05.016
|
| [10] | L. A. Steen, J. A. Seebach, Counterexamples in topology, 2 Eds., Springer, 1978. https://doi.org/10.1007/978-1-4612-6290-9 |
| [11] | K. Kuratowski, Topology, Vol. Ⅰ, Academic Press, 1966. https://doi.org/10.1016/C2013-0-11022-7 |
| [12] |
W. K. Min, A note on soft topological spaces, Comput. Math. Appl., 62 (2011), 3524–3528. http://doi.org/10.1016/j.camwa.2011.08.068 doi: 10.1016/j.camwa.2011.08.068
|
| [13] |
S. Hussain, B. Ahmad, Some properties of soft topological spaces, Comput. Math. Appl., 62 (2011), 4058–4067. http://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
|
| [14] |
I. Zorlutuna, M. Akdag, W. K. Min, S. Atmaca, Remarks on soft topological spaces, Ann. Fuzzy Math. Inf., 3 (2012), 171–185. https://doi.org/10.1136/vr.e5655 doi: 10.1136/vr.e5655
|
| [15] |
A. Aygünoğlu, H. Aygün, Some notes on soft topological spaces, Neural Comput. Appl., 21 (2012), 113–119. https://doi.org/10.3790/zfl.21.4.113 doi: 10.3790/zfl.21.4.113
|
| [16] | F. Lin, Soft connected spaces and soft paracompact spaces, Inter. J. Math. Comput. Sci., 7 (2013), 277–283. |
| [17] |
S. Hussain, On some soft functions, Math. Sci. Lett., 4 (2015), 55–61. https://doi.org/10.1373/clinchem.2014.232942 doi: 10.1373/clinchem.2014.232942
|
| [18] |
S. Hussain, A note on soft connectedness, Egyptian Math. Soc., 23 (2015), 6–11. http://doi.org/10.1016/j.joems.2014.02.003 doi: 10.1016/j.joems.2014.02.003
|
| [19] | S. Bayramov, C. Gunduz, A new approach to separability and compactness in soft topological spaces, TWMS J. Pure Appl. Math., 9 (2018), 82–93. |
| [20] |
T. Al-shami, L. D. R. Kočinac, B. A. Asaad, Sum of soft topological spaces, Mathematics, 8 (2020), 990. http://doi.org/10.3390/math8060990 doi: 10.3390/math8060990
|
| [21] |
M. Riaz, Z. Fatima, Certain properties of soft metric spaces, J. Fuzzt Math., 25 (2017), 543–560. https://doi.org/10.29049/rjcc.2017.25.5.543 doi: 10.29049/rjcc.2017.25.5.543
|
| [22] |
T. Al-shami, Soft somewhere dense sets on soft topological spaces, Commun. Korean Math. Soc., 33 (2018), 1341–1356. https://doi.org/10.4134/CKMS.c170378 doi: 10.4134/CKMS.c170378
|
| [23] | Z. A. Ameen, B. A. Asaad, T. Al-Shami, Soft somewhat continuous and soft somewhat open functions, TWMS J. Pure Appl. Math., 12 (2023), 792–806. |
| [24] |
Z. A. Ameen, M. H. Alqahtani, Baire category soft sets and thier symmetric local properties, Symmetry, 15 (2023), 1810. https://doi.org/10.3390/sym15101810 doi: 10.3390/sym15101810
|
| [25] |
A. Alajlan, A. Alghamdi, Innovative strategy for constructing soft topology, Axioms, 10 (2023), 967. https://doi.org/10.3390/axioms12100967 doi: 10.3390/axioms12100967
|
| [26] |
S. Hussain, H. F. Akiz, A. I. Alajlan, On algebraic properties of soft real points, Fixed Point Theory Appl., 2019 (2019), 9. https://doi.org/10.1186/s13663-019-0659-2 doi: 10.1186/s13663-019-0659-2
|
| [27] |
M. Terepeta, On separating axioms and similarity of soft topological spaces, Soft Comput., 23 (2019), 1049–1057. https://doi.org/10.1007/s00500-017-2824-z doi: 10.1007/s00500-017-2824-z
|
| [28] |
J. C. R. Alcantud, Soft open bases and a novel construction of soft topologies from bases for topologies, Mathematics, 8 (2020), 672. https://doi.org/10.3390/math8050672 doi: 10.3390/math8050672
|
| [29] | S. Al Ghour, Z. A. Ameen, On soft submaximal spaces, Heliyon, 8 (2022), 9. |
| [30] |
A. Rawshdeh, H. Al-Jarrah, T. M. Al-Shami, Soft expandable spaces, Filomat, 37 (2023), 2845–2858. https://doi.org/10.2298/FIL2309845R doi: 10.2298/FIL2309845R
|
| [31] |
T. M. Al-shami, Z. A. Ameen, R. Abu-Gdairi, A. Mhemdi, On primal soft topology, Mathematics, 11 (2023), 2329. https://doi.org/10.3390/math11102329 doi: 10.3390/math11102329
|
| [32] |
M. H. Alqahtani, Z. A. Ameen, Soft nodec spaces, AIMS Math., 9 (2024), 3289–3302. https://doi.org/10.3934/math.2024160 doi: 10.3934/math.2024160
|
| [33] |
Z. A. Ameen, S. Al Ghour, Cluster soft sets and cluster soft topologies, Comp. Appl. Math., 42 (2023), 337. https://doi.org/10.1007/s40314-023-02476-7 doi: 10.1007/s40314-023-02476-7
|
| [34] |
Z. A. Ameen, M. H. Alqahtani, O. F. Alghamdi, Lower density soft operators and density soft topologies, Heliyon, 10 (2024), e35280. https://doi.org/10.1016/j.heliyon.2024.e35280 doi: 10.1016/j.heliyon.2024.e35280
|
| [35] | Z. A. Ameen, O. F. Alghamdi, Soft topologies induced by almost lower density soft operators, Eng. Lett., 33 (2025), 712–720. |
| [36] |
O. F. Alghamdi, M. H. Alqahtani, Z. A. Ameen, On soft submaximal and soft door spaces, Contem. Math., 6 (2025), 663–675. https://doi.org/10.37256/cm.6120255321 doi: 10.37256/cm.6120255321
|
| [37] |
P. K. Maji, R. Biswas, A. R. Roy, Soft set theory, Comput. Math. Appl., 45 (2003), 555–562. https://doi.org/10.1016/S0898-1221(03)00016-6 doi: 10.1016/S0898-1221(03)00016-6
|
| [38] |
M. I. Ali, F. Feng, X. Liu, W. K. Min, M. Shabir, On some new operations in soft set theory, Comput. Math. Appl., 57 (2009), 1547–1553. https://doi.org/10.1016/j.camwa.2008.11.009 doi: 10.1016/j.camwa.2008.11.009
|
| [39] | A. Kharal, B. Ahmad, Mappings on soft classes, New Math. Nat. Comput., 7 (2011), 471–481. |
| [40] | S. Nazmal, S. K. Samanta, Neighbourhood properties of soft topological spaces, Ann. Fuzzy Math. Inf., 6 (2013), 1–15. |
| [41] | N. Xie, Soft points and the structure of soft topological spaces, Ann. Fuzzy Math. Inform., 10 (2015), 309–322. |
| [42] |
H. Yang, X. Liao, S. Li, On soft continuous mappings and soft connectedness of soft topological spaces, Hacettepe J. Math. Stat., 44 (2015), 385–398. https://doi.org/10.3406/cchyp.2014.1561 doi: 10.3406/cchyp.2014.1561
|