Research article Special Issues

Well-posedness and stability of fractional stochastic integro-differential equations with general memory effects

  • Published: 26 September 2025
  • MSC : 34A07, 34A08, 60G22

  • Most existing research on well-posedness and stability has focused on fractional stochastic differential equations, with relatively fewer studies addressing fractional stochastic integro-differential equations (FSIDEs). In this work, we address this gap by establishing theoretical results on the well-posedness of FSIDEs. In particular, we derive a generalized Grönwall inequality and present results on Ulam-Hyers stability (UHS). Moreover, we extend existing findings by incorporating both the $ \Phi $-Caputo fractional derivative and the $ \mathrm{p} $th moment, thereby unifying and generalizing current results in the literature.

    Citation: Elkhateeb S. Aly, Muhammad Imran Liaqat, Saleh Alshammari, Mahmoud El-Morshedy. Well-posedness and stability of fractional stochastic integro-differential equations with general memory effects[J]. AIMS Mathematics, 2025, 10(9): 22265-22293. doi: 10.3934/math.2025992

    Related Papers:

  • Most existing research on well-posedness and stability has focused on fractional stochastic differential equations, with relatively fewer studies addressing fractional stochastic integro-differential equations (FSIDEs). In this work, we address this gap by establishing theoretical results on the well-posedness of FSIDEs. In particular, we derive a generalized Grönwall inequality and present results on Ulam-Hyers stability (UHS). Moreover, we extend existing findings by incorporating both the $ \Phi $-Caputo fractional derivative and the $ \mathrm{p} $th moment, thereby unifying and generalizing current results in the literature.



    加载中


    [1] N. Chefnaj, K. Hilal, A. Kajouni, Impulsive $\Phi$-Caputo hybrid fractional differential equations with non-local conditions, J. Math. Sci., 280 (2024), 168–179. https://doi.org/10.1007/s10958-023-06805-3 doi: 10.1007/s10958-023-06805-3
    [2] D. Prabu, Existence and stability results for $\Phi$-Caputo fractional integrodifferential equations with delay Hilbert, J. Math. Anal., 2 (2024), 106–117. https://doi.org/10.62918/hjma.v2i2.26 doi: 10.62918/hjma.v2i2.26
    [3] A. Taqbibt, N. Chefnaj, K. Hilal, S. Melliani, $\Phi$-Caputo fractional differential equations with maxima on time scales, J. Math. Sci., 289 (2025), 1–13. https://doi.org/10.1007/s10958-024-07034-y doi: 10.1007/s10958-024-07034-y
    [4] A. P. Selvam, V. Govindaraj, Controllability results for $\Phi$-Caputo fractional differential systems with impulsive effects, Qual. Theor. Dyn. Syst., 23 (2024), 21. https://doi.org/10.1007/s12346-024-01027-7 doi: 10.1007/s12346-024-01027-7
    [5] W. Ma, C. Dai, X. Li, X. Bao, On the kinetics of $\Phi$-fractional differential equations, Fract. Calc. Appl. Anal., 26 (2023), 2774–2804. https://doi.org/10.1007/s13540-023-00210-y doi: 10.1007/s13540-023-00210-y
    [6] R. Almeida, Functional differential equations involving the $\Phi$-Caputo fractional derivative, Fractal Fract., 4 (2020), 29. https://doi.org/10.3390/fractalfract4020029 doi: 10.3390/fractalfract4020029
    [7] M. Yang, Existence uniqueness of mild solutions for $\Phi$-Caputo fractional stochastic evolution equations driven by fBm, J. Inequal. Appl., 2021 (2021), 170. https://doi.org/10.1186/s13660-021-02703-x doi: 10.1186/s13660-021-02703-x
    [8] R. Zhu, Z. Wang, Z. Zhang, Global existence and convergence of the solution to the nonlinear $\psi$-Caputo fractional diffusion equation, J. Nonlinear Sci., 35 (2025), 36. https://doi.org/10.1007/s00332-025-10129-8 doi: 10.1007/s00332-025-10129-8
    [9] N. Chefnaj, K. Hilal, A. Kajouni, The existence, uniqueness and Ulam-Hyers stability results of a hybrid coupled system with $\Phi$-Caputo fractional derivatives, J. Appl. Math. Comput., 70 (2024), 2209–2224. https://doi.org/10.1007/s12190-024-02038-y doi: 10.1007/s12190-024-02038-y
    [10] A. M. Djaouti, Z. A. Khan, M. I. Liaqat, A. Al-Quran, Existence, uniqueness, and averaging principle of fractional neutral stochastic differential equations in the Lp space with the framework of the $\Phi$-Caputo derivative, Mathematics, 12 (2024), 1037. https://doi.org/10.3390/math12071037 doi: 10.3390/math12071037
    [11] U. Saeed, A generalized CAS wavelet method for solving $\Phi$-Caputo fractional differential equations, Eng. Computation., 40 (2023), 1351–1370. https://doi.org/10.1108/EC-12-2022-0711 doi: 10.1108/EC-12-2022-0711
    [12] O. Kahouli, S. Albadran, Z. Elleuch, Y. Bouteraa, A. B. Makhlouf, Stability results for neutral fractional stochastic differential equations, AIMS Math., 9 (2024), 3253–3263. https://doi.org/10.3934/math.2024158 doi: 10.3934/math.2024158
    [13] A. Ali, K. Hayat, A. Zahir, K. Shah, T. Abdeljawad, Qualitative analysis of fractional stochastic differential equations with variable order fractional derivative, Qual. Theor. Dyn. Syst., 23 (2024), 120. https://doi.org/10.1007/s12346-024-00982-5 doi: 10.1007/s12346-024-00982-5
    [14] A. Raheem, F. M. Alamrani, J. Akhtar, A. Alatawi, E. Alshaban, A. Khatoon, et al., Study on controllability for $\Phi$-Hilfer fractional stochastic differential equations, Fractal Fract., 8 (2024), 727. https://doi.org/10.3390/fractalfract8120727 doi: 10.3390/fractalfract8120727
    [15] K. Ramkumar, K. Ravikumar, S. Varshini, Fractional neutral stochastic differential equations with Caputo fractional derivative: Fractional Brownian motion, Poisson jumps, and optimal control, Stoch. Anal. Appl., 39 (2021), 157–176. https://doi.org/10.1080/07362994.2020.1789476 doi: 10.1080/07362994.2020.1789476
    [16] A. M. Djaouti, M. I. Liaqat, Qualitative analysis for the solutions of fractional stochastic differential equations, Axioms, 13 (2024), 438. https://doi.org/10.3390/axioms13070438 doi: 10.3390/axioms13070438
    [17] G. Xiao, J. Wang, Stability of solutions of Caputo fractional stochastic differential equations, Nonlinear Anal.-Model., 26 (2021), 581–596. https://doi.org/10.15388/namc.2021.26.22421 doi: 10.15388/namc.2021.26.22421
    [18] G. Xiao, L. Ren, R. Liu, Finite-time stability of equilibrium points of nonlinear fractional stochastic differential equations, Fractal Fract., 9 (2025), 510. https://doi.org/10.3390/fractalfract9080510 doi: 10.3390/fractalfract9080510
    [19] M. I. Liaqat, F. U. Din, W. Albalawi, K. S. Nisar, A. H. Abdel-Aty, Analysis of stochastic delay differential equations in the framework of conformable fractional derivatives, AIMS Math., 9 (2024), 11194–11211. https://doi.org/10.3934/math.2024549 doi: 10.3934/math.2024549
    [20] A. M. Djaouti, M. I. Liaqat, Theoretical results on the pth moment of $\varphi$-Hilfer stochastic fractional differential equations with a pantograph term, Fractal Fract., 9 (2025), 134. https://doi.org/10.3390/fractalfract9030134 doi: 10.3390/fractalfract9030134
    [21] Z. Ali, M. A. Abebe, T. Nazir, Strong convergence of Euler-type methods for nonlinear fractional stochastic differential equations without singular kernel, Mathematics, 12 (2024). https://doi.org/10.3390/math12182890
    [22] M. Lavanya, B. S. Vadivoo, Analysis of controllability in Caputo-Hadamard stochastic fractional differential equations with fractional Brownian motion, Int. J. Dynam. Control, 12 (2024), 15–23. https://doi.org/10.1007/s40435-023-01244-z doi: 10.1007/s40435-023-01244-z
    [23] S. Moualkia, Y. Xu, On the existence and uniqueness of solutions for multidimensional fractional stochastic differential equations with variable order, Mathematics, 9 (2021), 2106. https://doi.org/10.3390/math9172106 doi: 10.3390/math9172106
    [24] C. Liping, M. A. Khan, A. Atangana, S. Kumar, A new financial chaotic model in Atangana-Baleanu stochastic fractional differential equations, Alex. Eng. J., 60 (2021), 5193–5204. https://doi.org/10.1016/j.aej.2021.04.023 doi: 10.1016/j.aej.2021.04.023
    [25] M. Abouagwa, F. Cheng, J. Li, Impulsive stochastic fractional differential equations driven by fractional Brownian motion, Adv. Differ. Equ., 2020 (2020), 57. https://doi.org/10.1186/s13662-020-2533-2 doi: 10.1186/s13662-020-2533-2
    [26] J. A. Asadzade, N. I. Mahmudov, Finite time stability analysis for fractional stochastic neutral delay differential equations, J. Appl. Math. Comput., 70 (2024), 5293–5317. https://doi.org/10.1007/s12190-024-02174-5 doi: 10.1007/s12190-024-02174-5
    [27] H. M. Ahmed, M. M. El-Borai, Hilfer fractional stochastic integro-differential equations, Appl. Math. Comput., 331 (2018), 182–189. https://doi.org/10.1016/j.amc.2018.03.009 doi: 10.1016/j.amc.2018.03.009
    [28] K. Abuasbeh, N. I. Mahmudov, M. Awadalla, Fractional stochastic integro-differential equations with nonintantaneous impulses: Existence, approximate controllability and stochastic iterative learning control, Fractal Fract., 7 (2023), 87. https://doi.org/10.3390/fractalfract7010087 doi: 10.3390/fractalfract7010087
    [29] K. Dhanalakshmi, P. Balasubramaniam, Exponential stability of second-order fractional stochastic integro-differential equations, Filomat, 37 (2023), 2699–2715. https://doi.org/10.2298/FIL2309699D doi: 10.2298/FIL2309699D
    [30] H. Badawi, N. Shawagfeh, O. A. Arqub, Fractional conformable stochastic integrodifferential equations: Existence, uniqueness, and numerical simulations utilizing the shifted Legendre spectral collocation algorithm, Math. Probl. Eng., 2022 (2022), 5104350. https://doi.org/10.1155/2022/5104350 doi: 10.1155/2022/5104350
    [31] J. Cui, L. Yan, Existence result for fractional neutral stochastic integro-differential equations with infinite delay, J. Phys. A-Math. Theor., 44 (2011), 335201. https://doi.org/10.1088/1751-8113/44/33/335201 doi: 10.1088/1751-8113/44/33/335201
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(446) PDF downloads(35) Cited by(0)

Article outline

Figures and Tables

Figures(2)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog