Ma-Minda-type analytic functions have been a central topic in geometric function theory due to their importance in studying properties such as univalence, convexity, and starlikeness. However, the class of Ma-Minda functions associated with kidney-shaped domains has not been systematically investigated before, leaving a clear research gap. In this paper, we introduced and studied the geometric properties of class $ {\mathcal{S}}^*_k $. Our approach combined rigorous geometric analysis with Python programming (version 3.13.2) and graphical illustrations, providing both theoretical depth and computational support. Several inclusion relations and radius problems for $ {\mathcal{S}}^*_k $ were established in comparison with other known classes. Furthermore, we examined various problems related to the initial coefficient bounds, with particular emphasis on their sharpness.
Citation: Adel Salim Tayyah, Sarem H. Hadi, Zhi-Gang Wang, Alina Alb Lupaş. Classes of Ma-Minda type analytic functions associated with a kidney-shaped domain[J]. AIMS Mathematics, 2025, 10(9): 22445-22470. doi: 10.3934/math.20251000
Ma-Minda-type analytic functions have been a central topic in geometric function theory due to their importance in studying properties such as univalence, convexity, and starlikeness. However, the class of Ma-Minda functions associated with kidney-shaped domains has not been systematically investigated before, leaving a clear research gap. In this paper, we introduced and studied the geometric properties of class $ {\mathcal{S}}^*_k $. Our approach combined rigorous geometric analysis with Python programming (version 3.13.2) and graphical illustrations, providing both theoretical depth and computational support. Several inclusion relations and radius problems for $ {\mathcal{S}}^*_k $ were established in comparison with other known classes. Furthermore, we examined various problems related to the initial coefficient bounds, with particular emphasis on their sharpness.
| [1] | W. C. Ma, D. Minda, A unified treatment of some special classes of univalent functions, In: Proceeding of conference on complex analytic, New York: International Press, 1994,157–169. |
| [2] |
W. Janowski, Some extremal problems for certain families of analytic functions I, Ann. Polon. Math., 28 (1973), 297–326. https://doi.org/10.4064/ap-28-3-297-326 doi: 10.4064/ap-28-3-297-326
|
| [3] |
F. Rønning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc., 118 (1993), 189–196. https://doi.org/10.1090/S0002-9939-1993-1128729-7 doi: 10.1090/S0002-9939-1993-1128729-7
|
| [4] | A. W. Goodman, On uniformly convex functions, Ann. Polon. Math., 56 (1991), 87–92. |
| [5] |
S. Kanas, A. Wisniowska, Conic regions and k-uniform convexity, J. Comput. Appl. Math., 105 (1999), 327–336. https://doi.org/10.1016/S0377-0427(99)00018-7 doi: 10.1016/S0377-0427(99)00018-7
|
| [6] |
J. Sokół, On some subclass of strongly starlike functions, Demonstr. Math., 31 (1998), 81–86. https://doi.org/10.1515/dema-1998-0111 doi: 10.1515/dema-1998-0111
|
| [7] | J. Sokół, J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, Zesz. Nauk. Politech. Rzeszowskiej Mat., 19 (1996), 101–105. |
| [8] |
R. Mendiratta, S. Nagpal, V. Ravichandran, A subclass of starlike functions associated with left-half of the lemniscate of Bernoulli, Int. J. Math., 25 (2014), 1450090. https://doi.org/10.1142/S0129167X14500906 doi: 10.1142/S0129167X14500906
|
| [9] |
R. K. Raina, J. Sokół, Some properties related to a certain class of starlike functions, C. R. Math., 353 (2015), 973–978. https://doi.org/10.1016/j.crma.2015.09.011 doi: 10.1016/j.crma.2015.09.011
|
| [10] |
R. K. Raina, P. Sharma, J. Sokół, Certain classes of analytic functions related to the crescent-shaped regions, J. Contemp. Mathemat. Anal., 53 (2018), 355–362. https://doi.org/10.3103/S1068362318060067 doi: 10.3103/S1068362318060067
|
| [11] |
P. Sharma, R. K. Raina, J. Sokół, Certain Ma–Minda type classes of analytic functions associated with the crescent-shaped region, Anal. Math. Phys., 9 (2019), 1887–1903. https://doi.org/10.1007/s13324-019-00285-y doi: 10.1007/s13324-019-00285-y
|
| [12] |
R. Mendiratta, S. Nagpal, V. Ravichandran, On a subclass of strongly starlike functions associated with exponential function, Bull. Malays. Math. Sci. Soc., 38 (2015), 365–386. https://doi.org/10.1007/s40840-014-0026-8 doi: 10.1007/s40840-014-0026-8
|
| [13] |
K. Sharma, N. K. Jain, V. Ravichandran, Starlike functions associated with a cardioid, Afr. Math., 27 (2016), 923–939. https://doi.org/10.1007/s13370-015-0387-7 doi: 10.1007/s13370-015-0387-7
|
| [14] | S. Kumar, V. Ravichandran, A subclass of starlike functions associated with a rational function, Southeast Asian Bull. Math., 40 (2016), 199–212. |
| [15] |
Y. Yunus, S. A. Halim, A. B. Akbarally, Subclass of starlike functions associated with a limacon, AIP Conf. Proc., 1974 (2018), 030023. https://doi.org/10.1063/1.5041667 doi: 10.1063/1.5041667
|
| [16] |
R. Kargar, A. Ebadian, J. Sokół, On Booth lemniscate and starlike functions, Anal. Math. Phys., 9 (2019), 143–154. https://doi.org/10.1007/s13324-017-0187-3 doi: 10.1007/s13324-017-0187-3
|
| [17] |
N. E. Cho, V. Kumar, S. S. Kumar, V. Ravichandran, Radius problems for starlike functions associated with the sine function, Bull. Iran. Math. Soc., 45 (2019), 213–232. https://doi.org/10.1007/s41980-018-0127-5 doi: 10.1007/s41980-018-0127-5
|
| [18] |
K. Khatter, V. Ravichandran, S. S. Kumar, Starlike functions associated with exponential function and the lemniscate of Bernoulli, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 113 (2019), 233–253. https://doi.org/10.1007/s13398-017-0466-8 doi: 10.1007/s13398-017-0466-8
|
| [19] |
P. Goel, S. S. Kumar, Certain class of starlike functions associated with modified sigmoid function, Bull. Malays. Math. Sci. Soc., 43 (2020), 957–991. https://doi.org/10.1007/s40840-019-00784-y doi: 10.1007/s40840-019-00784-y
|
| [20] |
S. Gandhi, P. Gupta, S. Nagpal, V. Ravichandran, Starlike functions associated with an Epicycloid, Hacet. J. Math. Stat., 51 (2022), 1637–1660. https://doi.org/10.15672/hujms.1019973 doi: 10.15672/hujms.1019973
|
| [21] |
M. Mundalia, S. S. Kumar, On a subfamily of starlike functions related to hyperbolic cosine function, J. Anal., 31 (2023), 2043–2062. https://doi.org/10.1007/s41478-023-00550-1 doi: 10.1007/s41478-023-00550-1
|
| [22] |
K. Arora, S. S. Kumar, Starlike functions associated with a petal shaped domain, Bull. Korean Math. Soc., 59 (2022), 993–1010. https://doi.org/10.4134/BKMS.b210602 doi: 10.4134/BKMS.b210602
|
| [23] | A. S. Tayyah, W. G. Atshan, Starlikeness and bi-starlikeness associated with a new Carathéodory function, J. Math. Sci., 2025. https://doi.org/10.1007/s10958-025-07604-8 |
| [24] |
A. Ahmad, J. Gong, I. Al-Shbeil, A. Rasheed, A. Ali, S. Hussain, Analytic functions related to a balloon-shaped domain, Fractal Fract., 7 (2023), 865. https://doi.org/10.3390/fractalfract7120865 doi: 10.3390/fractalfract7120865
|
| [25] |
R. Ali, M. Raza, T. Bulboacă, Sharp coefficient bounds for starlike functions associated with cosine function, Axioms, 13 (2024), 442. https://doi.org/10.3390/axioms13070442 doi: 10.3390/axioms13070442
|
| [26] |
S. H. Hadi, M. Darus, R. W. Ibrahim, Hankel and Toeplitz determinants for $q$-starlike functions involving a $q$-analog integral operator and $q$-exponential function, J. Funct. Space, 2025 (2025), 2771341. https://doi.org/10.1155/jofs/2771341 doi: 10.1155/jofs/2771341
|
| [27] |
S. H. Hadi, M. Darus, R. W. Ibrahim, Third-order Hankel determinants for $q$-analogue analytic functions defined by a modified $q$-Bernardi integral operator, Quaest. Math., 47 (2024), 2109–2131. https://doi.org/10.2989/16073606.2024.2352873 doi: 10.2989/16073606.2024.2352873
|
| [28] |
B. Khan, J. Gong, M. G. Khan, F. Tchier, Sharp coefficient bounds for a class of symmetric starlike functions involving the balloon shape domain, Heliyon, 10 (2024), e38838. https://doi.org/10.1016/j.heliyon.2024.e38838 doi: 10.1016/j.heliyon.2024.e38838
|
| [29] |
Q. A. Shakir, A. S. Tayyah, D. Breaz, L. I. Cotîrlă, E. Rapeanu, F. M. Sakar, Upper bounds of the third Hankel determinant for bi-univalent functions in crescent-shaped domains, Symmetry, 16 (2024), 1281. https://doi.org/10.3390/sym16101281 doi: 10.3390/sym16101281
|
| [30] |
A. S. Tayyah, W. G. Atshan, A class of bi-Bazilevič and bi-pseudo-starlike functions involving Tremblay fractional derivative operator, Probl. Anal. Issues Anal., 14 (2025), 145–161. https://doi.org/10.15393/j3.art.2025.16750 doi: 10.15393/j3.art.2025.16750
|
| [31] |
Z. G. Wang, H. M. Srivastava, M. Arif, Z. H. Liu, K. Ullah, Sharp bounds on Hankel determinants of bounded turning functions involving the hyperbolic tangent function, Appl. Anal. Discrete Math., 18 (2024), 551–571. https://doi.org/10.2298/AADM221203013W doi: 10.2298/AADM221203013W
|
| [32] |
B. A. Uralegaddi, M. D. Ganigi, S. M. Sarangi, Univalent functions with positive coefficients, Tamkang J. Math., 25 (1994), 225–230. https://doi.org/10.5556/j.tkjm.25.1994.4448 doi: 10.5556/j.tkjm.25.1994.4448
|
| [33] |
F. R. Keogh, E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20 (1969), 8–12. https://doi.org/10.2307/2035949 doi: 10.2307/2035949
|
| [34] |
I. Efraimidis, A generalization of Livingston's coefficient inequalities for functions with positive real part, J. Math. Anal. Appl., 435 (2016), 369–379. https://doi.org/10.1016/j.jmaa.2015.10.050 doi: 10.1016/j.jmaa.2015.10.050
|
| [35] | C. Pommerenke, Univalent functions, Göttingen: Vandenhoeck and Ruprecht, 1975. |
| [36] |
V. Ravichandran, S. Verma, Bound for the fifth coefficient of certain starlike functions, C. R. Math., 353 (2015), 505–510. https://doi.org/10.1016/j.crma.2015.03.003 doi: 10.1016/j.crma.2015.03.003
|