Research article Special Issues

Bifurcation and solitary wave solutions of a time-dependent paraxial equation using improved modified extended tanh function method

  • Published: 28 September 2025
  • MSC : 34G20, 35A20, 35A22, 35R11

  • This paper discusses an elaborate investigation of the dimensionless time-dependent paraxial equation based on its varied soliton solutions obtained through an improved modified extended tanh function method. The approach is capable of producing kink, bell-shaped, singular wave, periodic, singular periodic wave, bright and dark solitary wave, breather soliton, singular bell, M-shaped, W-shaped, and V-pattern solitons expressed as hyperbolic and trigonometric functions. Visualization via three dimensional (3D) surface plots, two dimensional (2D) cross-sections and contour plots allows a thorough examination of the wave morphology. Nonlinear dynamics are investigated using bifurcation, chaotic, sensitivity, and stability analyses that uncover complex solution behaviors and stability regimes. Modulation instability analysis verifies the stability of soliton structures under perturbations. The work demonstrates the effectiveness of the improved modified extended tanh function method for solving nonlinear partial differential equations and enhances theoretical knowledge of paraxial wave phenomena.

    Citation: Arooma Zainab, Muhammad Abbas, Yagoub A. S. Arko, Alina Alb Lupas, Tahir Nazir, Muhammad Zain Yousaf. Bifurcation and solitary wave solutions of a time-dependent paraxial equation using improved modified extended tanh function method[J]. AIMS Mathematics, 2025, 10(9): 22471-22496. doi: 10.3934/math.20251001

    Related Papers:

  • This paper discusses an elaborate investigation of the dimensionless time-dependent paraxial equation based on its varied soliton solutions obtained through an improved modified extended tanh function method. The approach is capable of producing kink, bell-shaped, singular wave, periodic, singular periodic wave, bright and dark solitary wave, breather soliton, singular bell, M-shaped, W-shaped, and V-pattern solitons expressed as hyperbolic and trigonometric functions. Visualization via three dimensional (3D) surface plots, two dimensional (2D) cross-sections and contour plots allows a thorough examination of the wave morphology. Nonlinear dynamics are investigated using bifurcation, chaotic, sensitivity, and stability analyses that uncover complex solution behaviors and stability regimes. Modulation instability analysis verifies the stability of soliton structures under perturbations. The work demonstrates the effectiveness of the improved modified extended tanh function method for solving nonlinear partial differential equations and enhances theoretical knowledge of paraxial wave phenomena.



    加载中


    [1] J. R. M. Borhan, M. Mamun Miah, F. Z. Duraihem, M. A. Iqbal, W. X. Ma, New optical soliton structures, bifurcation properties, chaotic phenomena, and sensitivity analysis of two nonlinear partial differential equations, Int. J. Theor. Phys., 63 (2024), 183. https://doi.org/10.1007/s10773-024-05713-9 doi: 10.1007/s10773-024-05713-9
    [2] A. Farooq, T. Shafique, M. Abbas, A. Birhanu, Y. S. Hamed, Explicit travelling wave solutions to the time fractional Phi-four equation and their applications in mathematical physics, Sci. Rep., 15 (2025), 1683. https://doi.org/10.1038/s41598-025-86177-7 doi: 10.1038/s41598-025-86177-7
    [3] G. Zhang, W. Weng, Z. Yan, On large-space and long-time asymptotic behaviors of kink-soliton gases in the sine-Gordon equation, arXiv, 2025, arXiv: 2501.03493. https://doi.org/10.48550/arXiv.2501.03493
    [4] M. Vivas-Cortez, M. Nageen, M. Abbas, M. Alosaimi, Investigation of analytical soliton solutions to the non-linear Klein-Gordon model using efficient techniques, Symmetry, 16 (2024), 1085. https://doi.org/10.3390/sym16081085 doi: 10.3390/sym16081085
    [5] K. U. Tariq, J. G. Liu, S. Nisar, Study of explicit travelling wave solutions of nonlinear (2+1)-dimensional Zoomeron model in mathematical physics, J. Nonlinear Complex Data Sci., 25 (2024), 109–124. https://doi.org/10.1515/jncds-2023-0068 doi: 10.1515/jncds-2023-0068
    [6] S. Arshed, G. Akram, M. Sadaf, M. Irfan, M. Inc, Extraction of exact soliton solutions of (2+1)-dimensional Chaffee-Infante equation using two exact integration techniques, Opt. Quantum Electron., 56 (2024), 988. https://doi.org/10.1007/s11082-024-06470-z doi: 10.1007/s11082-024-06470-z
    [7] A. A. Mamun, C. Lu, S. N. Ananna, M. M. Uddin, Rational sine-Gordon expansion method to analyze the dynamical behavior of the time-fractional phi-four and (2+1)-dimensional CBS equations, Sci. Rep., 14 (2024), 9473. https://doi.org/10.1038/s41598-024-60156-w doi: 10.1038/s41598-024-60156-w
    [8] P. R. Kundu, M. R. A. Fahim, M. E. Islam, M. A. Akbar, The sine-Gordon expansion method for higher-dimensional NLEEs and parametric analysis, Heliyon, 7 (2021), e06459. https://doi.org/10.1016/j.heliyon.2021.e06459 doi: 10.1016/j.heliyon.2021.e06459
    [9] K. J. Wang, The generalized (3+1)-dimensional B-type Kadomtsev-Petviashvili equation: Resonant multiple soliton, N-soliton, soliton molecules and the interaction solutions, Nonlinear Dyn., 112 (2024), 7309–7324. https://doi.org/10.1007/s11071-024-09356-7 doi: 10.1007/s11071-024-09356-7
    [10] H. H. Hussein, H. M. Ahmed, W. Alexan, Analytical soliton solutions for cubic-quartic perturbations of the Lakshmanan-Porsezian-Daniel equation using the modified extended tanh function method, Ain Shams Eng. J., 15 (2024), 102513. https://doi.org/10.1016/j.asej.2023.102513 doi: 10.1016/j.asej.2023.102513
    [11] K. J. Wang, A fast insight into the optical solitons of the generalized third-order nonlinear Schrödinger equation, Results Phys., 40 (2022), 105872. https://doi.org/10.1016/j.rinp.2022.105872 doi: 10.1016/j.rinp.2022.105872
    [12] Y. H. Liang, K. J. Wang, Dynamics of the new exact wave solutions to the local fractional Vakhnenko-Parkes equation, Fractals, 2025, 2550102. https://doi.org/10.1142/S0218348X25501026
    [13] E. H. Abdullah, A. A. Zaghrout, H. M. Ahmed, A. I. A. Bahnasy, W. B. Rabie, Soliton dynamics and travelling wave solutions for high-order nonlinear Schrödinger equation in birefringent fibers using improved modified extended tanh function method, Opt. Quant. Electron., 56 (2024), 789. https://doi.org/10.1007/s11082-024-06488-3 doi: 10.1007/s11082-024-06488-3
    [14] M. B. Almatrafi, Solitary wave solutions to a fractional-order Fokas equation via the improved modified extended tanh-function approach, Mathematics, 13 (2025), 109. https://doi.org/10.3390/math13010109 doi: 10.3390/math13010109
    [15] Z. Yang, B. Y. C. Hon, An improved modified extended tanh-function method, Z. Naturforsch. A, 61 (2006), 103–115. https://doi.org/10.1515/zna-2006-3-401 doi: 10.1515/zna-2006-3-401
    [16] A. A. Mamun, S. N. Ananna, P. P. Gharami, T. An, M. Asaduzzaman, The improved modified extended tanh-function method to develop the exact travelling wave solutions of a family of 3D fractional WBBM equations, Results Phys., 41 (2022), 105969. https://doi.org/10.1016/j.rinp.2022.105969 doi: 10.1016/j.rinp.2022.105969
    [17] C. Gomez, An effective fractional paraxial wave equation for wave-fronts in randomly layered media with long-range correlations, Multiscale Model. Simul., 21 (2023), 1410–1456. https://doi.org/10.1137/22M1525594 doi: 10.1137/22M1525594
    [18] G. Akram, M. Sadaf, S. Arshed, M. S. Riaz, Exact solutions of paraxial equation via extended hyperbolic function method, Opt. Quant. Electron., 56 (2024), 1621. https://doi.org/10.1007/s11082-024-07490-5 doi: 10.1007/s11082-024-07490-5
    [19] S. Tarla, R. Yilmazer, Investigation of time-dependent paraxial equation with an analytical method, Optik, 261 (2022), 169111. https://doi.org/10.1016/j.ijleo.2022.169111 doi: 10.1016/j.ijleo.2022.169111
    [20] S. Tarla, K. K. Ali, R. Yilmazer, Newly modified unified auxiliary equation method and its applications, Optik, 269 (2022), 169880. https://doi.org/10.1016/j.ijleo.2022.169880 doi: 10.1016/j.ijleo.2022.169880
    [21] Abdullah, G. U. Rahman, O. Tunc, Analytical optical soliton solution & stability analysis of the dimensionless time-dependent paraxial equation, Indian J. Phys., 99 (2025), 4181–4195. https://doi.org/10.1007/s12648-025-03614-z doi: 10.1007/s12648-025-03614-z
    [22] S. Ramzan, M. Arshad, A. R. Seadawy, I. Ahmed, N. Hussain, Studying exploring paraxial wave equation in Kerr media: Unveiling the governing laws, rational solitons and multi-wave solutions and their stability with applications, Mod. Phys. Lett. B, 39 (2025), 2450513. https://doi.org/10.1142/S0217984924505134 doi: 10.1142/S0217984924505134
    [23] K. J. Wang, H. W. Zhu, S. Li, F. Shi, G. Li, X. L. Liu, Bifurcation analysis, chaotic behaviors, variational principle, Hamiltonian and diverse optical solitons of the fractional complex Ginzburg-Landau model, Int. J. Theor. Phys., 64 (2025), 134. https://doi.org/10.1007/s10773-025-05977-9 doi: 10.1007/s10773-025-05977-9
    [24] M. S. Ullah, M. Z. Ali, H. O. Roshid, Bifurcation analysis and new waveforms to the first fractional WBBM equation, Sci. Rep., 14 (2024), 11907. https://doi.org/10.1038/s41598-024-62754-0 doi: 10.1038/s41598-024-62754-0
    [25] K. Hosseini, E. Hinal, M. Ilie, Bifurcation analysis, chaotic behaviors, sensitivity analysis, and soliton solutions of a generalized Schrödinger equation, Nonlinear Dyn., 111 (2023), 17455–17462. https://doi.org/10.1007/s11071-023-08759-2 doi: 10.1007/s11071-023-08759-2
    [26] S. Zhao, Multiple solutions and dynamical behavior of the periodically excited beta-fractional generalized KdV-ZK system, Phys. Scr., 100 (2025), 045244. https://doi.org/10.1088/1402-4896/adc20c doi: 10.1088/1402-4896/adc20c
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(466) PDF downloads(34) Cited by(0)

Article outline

Figures and Tables

Figures(21)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog