Research article Special Issues

An exponentiated Haq distribution: Theoretical aspects, estimation, and modeling of radiation and COVID-19 datasets

  • Published: 29 September 2025
  • MSC : 60E05, 62F10

  • In this study, we proposed a new extension of the Haq distribution using an exponentiated-G family of distributions. The new distribution is named the exponentiated Haq distribution. The exponentiated Haq distribution improves the adaptability and flexibility of the underlying distribution and is thus applicable to a variety of datasets with such features as skewness, heavy tails, and high variability. Important properties, such as quantile function, mode, moments, incomplete moments, entropy measure, as well as order statistics of the proposed distribution have been obtained. The estimation of parameters of the exponentiated Haq distribution was conducted using six classical parameter estimation methods and an extensive simulation study was conducted to determine how the estimators performed. Real-world applications to radiation and COVID-19 datasets demonstrate that the proposed distribution outperforms several existing distributions, establishing it as a powerful tool for modeling complex data in diverse fields.

    Citation: Amirah Saeed Alharthi. An exponentiated Haq distribution: Theoretical aspects, estimation, and modeling of radiation and COVID-19 datasets[J]. AIMS Mathematics, 2025, 10(9): 22497-22530. doi: 10.3934/math.20251002

    Related Papers:

  • In this study, we proposed a new extension of the Haq distribution using an exponentiated-G family of distributions. The new distribution is named the exponentiated Haq distribution. The exponentiated Haq distribution improves the adaptability and flexibility of the underlying distribution and is thus applicable to a variety of datasets with such features as skewness, heavy tails, and high variability. Important properties, such as quantile function, mode, moments, incomplete moments, entropy measure, as well as order statistics of the proposed distribution have been obtained. The estimation of parameters of the exponentiated Haq distribution was conducted using six classical parameter estimation methods and an extensive simulation study was conducted to determine how the estimators performed. Real-world applications to radiation and COVID-19 datasets demonstrate that the proposed distribution outperforms several existing distributions, establishing it as a powerful tool for modeling complex data in diverse fields.



    加载中


    [1] W. Marshall, I. Olkin, A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families, Biometrika, 84 (1997), 641–652. https://doi.org/10.1093/biomet/84.3.641 doi: 10.1093/biomet/84.3.641
    [2] R. C. Gupta, P. L. Gupta, R. D. Gupta, Modeling failure time data by Lehman alternatives, Commun. Stat. Theor. M., 27 (1998), 887–904. https://doi.org/10.1080/03610929808832134 doi: 10.1080/03610929808832134
    [3] C. Alexander, G. M. Cordeiro, E. M. M. Ortega, J. María, J. M. Sarabia, Generalized beta-generated distributions, Comput. Stat. Data An., 56 (2012), 1880–1897. https://doi.org/10.1016/j.csda.2011.11.015 doi: 10.1016/j.csda.2011.11.015
    [4] M. Ahsan-ul-Haq, M. Elgarhy, The odd Fréchet-G family of probability distributions, J. Stat. Appl. Probab., 7 (2018), 189–203. https://doi.org/doi:10.18576/jsap/070117 doi: 10.18576/jsap/070117
    [5] M. Ahsan-ul-Haq, A. Z. Memon, S. Chand, An analysis of generalized exponential uniform distribution, Math. Prob. Eng., 1 (2022), 1–15. https://doi.org/10.1155/2022/6040943 doi: 10.1155/2022/6040943
    [6] M. Ahsan-ul-Haq, M. K. Shahzad, S. Tariq, The inverted Nadarajah-Haghighi power series distributions, Int. J. Appl. Comput. Math., 10 (2024), 11. https://doi.org/10.1007/s40819-023-01551-1 doi: 10.1007/s40819-023-01551-1
    [7] E. A. ElSherpieny, E. M. Almetwally, The exponentiated generalized alpha power family of distribution: Properties and applications, Pak. J. Stat. Oper. Res., 18 (2022), 349–367. https://doi.org/10.18187/pjsor.v18i2.3515 doi: 10.18187/pjsor.v18i2.3515
    [8] M. M. Salama, E. S. A. El-Sherpieny, A. E. A. Abd-elaziz, The length-biased weighted exponentiated inverted exponential distribution: Properties and estimation, Comput. J. Math. Stat. Sci., 2 (2023), 181–196. https://doi.org/10.21608/cjmss.2023.215674.1009 doi: 10.21608/cjmss.2023.215674.1009
    [9] A. M. Almarashi, M. Elgarhy, F. Jamal, C. Chesneau, The exponentiated truncated inverse Weibull-generated family of distributions with applications, Symmetry, 12 (2020), 650. https://doi.org/10.3390/sym12040650 doi: 10.3390/sym12040650
    [10] M. A. Aldahlan, F. Jamal, C. Chesneau, I. Elbatal, M. Elgarhy, Exponentiated power generalized Weibull power series family of distributions: Properties, estimation and applications, PloS One, 15 (2020), e0230004. https://doi.org/10.1371/journal.pone.0230004 doi: 10.1371/journal.pone.0230004
    [11] A. Albadawy, E. Ashour, A. A. EL-Helbawy, G. R. AL-Dayian, Bayesian estimation and prediction for exponentiated inverted Topp-Leone distribution, Comput. J. Math. Stat. Sci., 3 (2024), 33–56. https://doi.org/10.21608/cjmss.2023.241890.1022 doi: 10.21608/cjmss.2023.241890.1022
    [12] G. O. Orji, H. O. Etaga, E. M. Almetwally, C. P. Igbokwe, O. C. Aguwa, O. J. Obulezi, A new odd reparameterized exponential transformed-x family of distributions with applications to public health data, Innov. Stat. Probab., 1 (2025), 88–118. https://doi.org/10.64389/isp.2025.01107 doi: 10.64389/isp.2025.01107
    [13] A. I. L. Abonongo, J. Abonongo, Exponentiated generalized weibull exponential distribution: properties, estimation and applications, Comput. J. Math. Stat. Sci., 3 (2024), 57–84. https://doi.org/10.21608/cjmss.2023.243845.1023 doi: 10.21608/cjmss.2023.243845.1023
    [14] M. Elgarhy, A. Hassan, Exponentiated Weibull Weibull distribution: Statistical properties and applications, Gazi U. J. Sci., 32 (2019), 616–635.
    [15] A. S. Hassan, S. M. Assar, The exponentiated Weibull power function distribution, J. Data Sci., 16 (2017), 589–614. https://doi.org/10.6339/JDS.201710_15(4).00002 doi: 10.6339/JDS.201710_15(4).00002
    [16] A. M. Alomair, M. Ahmed, S. Tariq, M. Ahsan-ul-Haq, J. Talib, An exponentiated XLindley distribution with properties, inference and applications, Heliyon, 10 (2024), e25472. https://doi.org/10.1016/j.heliyon.2024.e25472 doi: 10.1016/j.heliyon.2024.e25472
    [17] A. I. Shawky, H. H. Abu-Zinadah, Exponentiated Pareto distribution: Different method of estimations, Int. J. Contemp. Math. Sci., 4 (2009), 677–693.
    [18] H. M. Salem, The exponentiated Lomax distribution: Different estimation methods, Am. J. Appl. Math. Stat., 2 (2014), 364–368. https://doi.org/10.12691/ajams-2-6-2 doi: 10.12691/ajams-2-6-2
    [19] S. K. Ashour, M. A. Eltehiwy, Exponentiated power Lindley distribution, J. Adv. Res., 6 (2015), 895–905. https://doi.org/10.1016/j.jare.2014.08.005 doi: 10.1016/j.jare.2014.08.005
    [20] S. Nadarajah, S. Kotz, The exponentiated Fréchet distribution, Interstat Elect. J., 14 (2003), 1–7.
    [21] L. Elbatal, S. Diab, M. Elgarhy, Exponentiated quasi Lindley distribution, Int. J. Reliab. Appl., 17 (2016), 1–19.
    [22] B. Peng, Z. Xu, M. Wang, The exponentiated Lindley geometric distribution with applications, Entropy, 21 (2019), 510. https://doi.org/10.3390/e21050510 doi: 10.3390/e21050510
    [23] E. S. Alotaibi, An exponentiated ZLindley distribution with application to breast cancer and radiotherapy data, J. Radiat. Res. Appl. Sci., 18 (2025), 101755. https://doi.org/10.1016/j.jrras.2025.101755 doi: 10.1016/j.jrras.2025.101755
    [24] M. Ahsan-ul-Haq, Statistical analysis of Haq distribution: Estimation and applications, Pak. J. Statist., 38 (2022), 473–490.
    [25] M. E. Ghitany, B. Atieh, S. Nadarajah, Lindley distribution and its application, Math. Comput. Simul., 78 (2008), 493–506. https://doi.org/10.1016/j.matcom.2007.06.007 doi: 10.1016/j.matcom.2007.06.007
    [26] R. Fletcher, Practical methods of optimization, New York: John Wiley & Sons, 2000. https://doi.org/10.1002/9781118723203
    [27] R. C. H. Cheng, N. A. K. Amin, Estimating parameters in continuous univariate distributions with a shifted origin, J. R. Stat. Soc. B, 45 (1983), 394–403. https://doi.org/10.1111/j.2517-6161.1983.tb01268.x doi: 10.1111/j.2517-6161.1983.tb01268.x
    [28] T. W. Anderson, D. A. Darling, Asymptotic theory of certain "goodness of fit" criteria based on stochastic processes, Ann. Math. Statist., 23 (1952), 193–212. https://doi.org/10.1214/aoms/1177729437 doi: 10.1214/aoms/1177729437
    [29] K. Choi, W. G. Bulgren, An estimation procedure for mixtures of distributions, J. R. Stat. Soc. B, 30 (1968), 444–460. https://www.jstor.org/stable/2984247
    [30] J. J. Swain S. Venkatraman, J. R. Wilson, Least-squares estimation of distribution functions in Johnson's translation system, J. Stat. Comput. Simul., 29 (1988), 271–297. https://doi.org/10.1080/00949658808811068 doi: 10.1080/00949658808811068
    [31] A. M. Abd Al-Fattah, A. A. EL-Helbawy, G. R. AL-Dayian, Inverted Kumaraswamy distribution: Properties and estimation, Pak. J. Statist., 33 (2017), 37–61.
    [32] N. Saaidia, T. Belhamra, H. Zeghdoudi, On ZLindley distribution: Statistical properties and applications, Stud. Eng. Exact Sci., 5 (2024), 3078–3097. https://doi.org/10.54021/seesv5n1-153 doi: 10.54021/seesv5n1-153
    [33] S. Chouia, H. Zeghdoudi, The XLindley distribution: Properties and application, J. Stat. Theory Appl., 20 (2021), 318–327. https://doi.org/10.2991/jsta.d.210607.001 doi: 10.2991/jsta.d.210607.001
    [34] S. Sen, S. S. Maiti, N. Chandra, The xgamma distribution: Statistical properties and application, J. Mod. Appl. Stat. Meth., 15 (2016), 774–788. https://doi.org/10.22237/jmasm/1462077420 doi: 10.22237/jmasm/1462077420
    [35] N. A. H. Abdelfattah, R. M. Sayed, Comparative efficacy of gamma and microwave radiation in protecting peppermint from infestation by drugstore beetle (Stegobium paniceum) L, Int. J. Trop. Insect Sci., 42 (2022), 1367–1372. https://doi.org/10.1007/s42690-021-00655-9 doi: 10.1007/s42690-021-00655-9
    [36] H. M. Almongy, E. M. Almetwally, H. M. Aljohani, A. S. Alghamdi, E. H. Hafez, A new extended Rayleigh distribution with applications of COVID-19 data, Result. Phys., 23 (2021), 104012. https://doi.org/10.1016/j.rinp.2021.104012 doi: 10.1016/j.rinp.2021.104012
    [37] A. T. Hammad, E. H. Hafez, U. Shahzad, E. Yıldırım, E. M. Almetwally, B. G. Kibria, New modified Liu estimators to handle the multicollinearity in the beta regression model: Simulation and applications, Mod. J. Stat., 1 (2025), 58–79. https://doi.org/10.64389/mjs.2025.01111 doi: 10.64389/mjs.2025.01111
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(459) PDF downloads(27) Cited by(0)

Article outline

Figures and Tables

Figures(7)  /  Tables(13)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog