Research article Special Issues

Existence and uniqueness of solutions for fractional Volterra-Fredholm equations in Banach spaces of order $ \eta\in(1, 2) $

  • Published: 22 September 2025
  • MSC : 45J05, 45M10, 46E15, 47G20

  • The primary objective of this paper is to investigate and establish existence and uniqueness results for solutions of nonlinear Volterra-Fredholm integro-differential equations (VFIDEs) of fractional order, specifically for $ 1 < \eta < 2 $. By leveraging fixed-point theorems and contraction mapping principles within Banach spaces, we derive comprehensive results for both one-dimensional and two-dimensional nonlinear fractional-order equations. By presenting sufficient conditions, we ensure the existence and uniqueness of a fixed point associated with the operator form of the VFIDEs. Our analysis provides a rigorous framework for understanding the behavior of such equations, and the results obtained in this study enhance our knowledge of fractional integro-differential equations (FIDEs). To illustrate the practical application of these theoretical results, two examples are provided that demonstrate the uniqueness of solutions.

    Citation: Mdi Begum Jeelani, Farva Hafeez, Nouf AbdulRahman Alqahtani. Existence and uniqueness of solutions for fractional Volterra-Fredholm equations in Banach spaces of order $ \eta\in(1, 2) $[J]. AIMS Mathematics, 2025, 10(9): 21916-21928. doi: 10.3934/math.2025976

    Related Papers:

  • The primary objective of this paper is to investigate and establish existence and uniqueness results for solutions of nonlinear Volterra-Fredholm integro-differential equations (VFIDEs) of fractional order, specifically for $ 1 < \eta < 2 $. By leveraging fixed-point theorems and contraction mapping principles within Banach spaces, we derive comprehensive results for both one-dimensional and two-dimensional nonlinear fractional-order equations. By presenting sufficient conditions, we ensure the existence and uniqueness of a fixed point associated with the operator form of the VFIDEs. Our analysis provides a rigorous framework for understanding the behavior of such equations, and the results obtained in this study enhance our knowledge of fractional integro-differential equations (FIDEs). To illustrate the practical application of these theoretical results, two examples are provided that demonstrate the uniqueness of solutions.



    加载中


    [1] S. Kumar, A. Chaudhary, S. Malik, V. Singh, A new Morgan-Voyce collocation technique and its applications for solving fractional integro-differential equations, Comput. Appl. Math., 44 (2025), 369. https://doi.org/10.1007/s40314-025-03325-5 doi: 10.1007/s40314-025-03325-5
    [2] K. A. Abro, A. Atangana, J. F. Gomez-Aguilar, A comparative analysis of plasma dilution based on fractional integro-differential equation: an application to biological science, Int. J. Model. Simul., 43 (2023), 1–10. https://doi.org/10.1080/02286203.2021.2015818 doi: 10.1080/02286203.2021.2015818
    [3] P. Raghavendran, T. Gunasekar, S. Gochhait, Application of artificial neural networks for existence and controllability in impulsive fractional Volterra-Fredholm integro-differential equations, Appl. Math. Sci. Eng., 32 (2024), 2436440. https://doi.org/10.1080/27690911.2024.2436440 doi: 10.1080/27690911.2024.2436440
    [4] I. Ali, S. U. Khan, A dynamic competition analysis of stochastic fractional differential equation arising in finance via pseudospectral method, Mathematics, 11 (2023), 1–16. https://doi.org/10.3390/math11061328 doi: 10.3390/math11061328
    [5] L. Sadek, The methods of fractional backward differentiation formulas for solving two-term fractional differential Sylvester matrix equations, Appl. Set Valued Anal. Optim., 6 (2024), 137–155. https://doi.org/10.23952/asvao.6.2024.2.02 doi: 10.23952/asvao.6.2024.2.02
    [6] C. Zhai, L. Bai, Positive solutions for a new system of Hadamard fractional integro-differential equations on an infinite interval, J. Nonlinear Funct. Anal., 2024 (2024), 27. https://doi.org/10.23952/jnfa.2024.27 doi: 10.23952/jnfa.2024.27
    [7] V. Obukhovskii, G. Petrosyan, M. Soroka, J. C. Yao, On topological properties of solution sets of semilinear fractional differential inclusions with non-convex right-hand side, J. Nonlinear Var. Anal., 8 (2024), 95–108. https://doi.org/10.23952/jnva.8.2024.1.05 doi: 10.23952/jnva.8.2024.1.05
    [8] S. A. M. Alsallami, K. R. Raslan, E. M. Khalil, S. Abdel-Khalek, A. A. E. Ibrahim, K. K. Ali, Exploring the dynamics of fractional $q$-integro-differential equations with infinite time delays: a study in mathematical analysis, J. Math., 2024 (2024), 3381147. https://doi.org/10.1155/2024/3381147 doi: 10.1155/2024/3381147
    [9] P. Raghavendran, T. Gunasekar, S. Gochhait, Application of artificial neural networks for existence and controllability in impulsive fractional Volterra-Fredholm integro-differential equations, Appl. Math. Sci. Eng., 32 (2024), 2436440. https://doi.org/10.1080/27690911.2024.2436440 doi: 10.1080/27690911.2024.2436440
    [10] L. Guran, Z. D. Mitrovic, G. S. M. Reddy, A. Belhenniche, S. Radenovic, Applications of a fixed point result for solving nonlinear fractional and integral differential equations, Fractal Fract., 5 (2021), 211. https://doi.org/10.3390/fractalfract5040211 doi: 10.3390/fractalfract5040211
    [11] A. El Ghazouani, M. Elomari, S. Melliani, Existence, uniqueness, and UH-stability results for nonlinear fuzzy fractional Volterra-Fredholm integro-differential equations, J. Nonlinear Complex Data Sci., 25 (2025), 457–477. https://doi.org/10.1515/jncds-2024-0019 doi: 10.1515/jncds-2024-0019
    [12] A. Albugami, N. A. Alharbi, A. M. S. Mahdy, Computational methods, existence and uniqueness for solving 2-D fractional nonlinear Fredholm integro-differential equation, Eur. J. Pure Appl. Math., 18 (2025), 5924. https://doi.org/10.29020/nybg.ejpam.v18i2.5924 doi: 10.29020/nybg.ejpam.v18i2.5924
    [13] K. E. Bicer, H. G. Dag, Numerical method based on boole polynomial for solution of general functional integro-differential equations with hybrid delays, TWMS J. Appl. Eng. Math., 14 (2024), 1264–1277.
    [14] B. A. Miah, M. Sen, R. Murugan, D. Gupta, Existence and uniqueness result for two-dimensional fraction order nonlinear IDE with delay and its numerical investigation, Int. J. Appl. Comput. Math., 11 (2025), 1–20. https://doi.org/10.1007/s40819-025-01886-x doi: 10.1007/s40819-025-01886-x
    [15] A. F. Adebisi, K. A. Okunola, Solution of Volterra-Fredholm integro-differential equations using Chebyshev least square method, Sci. World J., 20 (2025), 271–275. https://doi.org/10.4314/swj.v20i1.36 doi: 10.4314/swj.v20i1.36
    [16] S. Kumar, P. Yadav, V. K. Singh, Product integration techniques for fractional integro-differential equations, Math. Methods Appl. Sci., 48 (2025), 2833–2858. https://doi.org/10.1002/mma.10464 doi: 10.1002/mma.10464
    [17] J. Alavi, H. Aminikhah, An efficient parametric finite difference and orthogonal spline approximation for solving the weakly singular nonlinear time-fractional partial integro-differential equation, Comput. Appl. Math., 42 (2023), 350. https://doi.org/10.1007/s40314-023-02491-8 doi: 10.1007/s40314-023-02491-8
    [18] J. Alavi, H. Aminikhah, Orthogonal cubic spline basis and its applications to a partial integro-differential equation with a weakly singular kernel, Comput. Appl. Math., 40 (2021), 55. https://doi.org/10.1007/s40314-021-01442-5 doi: 10.1007/s40314-021-01442-5
    [19] A. Singh, N. Srivastava, Y. Kumar, V. K. Singh, Computational approach for two-dimensional fractional integro-differential equations, Int. J. Appl. Comput. Math., 10 (2024), 155. https://doi.org/10.1007/s40819-024-01785-7 doi: 10.1007/s40819-024-01785-7
    [20] A. Singh, N. Srivastava, S. Singh, V. K. Singh, Computational technique for multi-dimensional non-linear weakly singular fractional integro-differential equation, Chin. J. Phys., 80 (2022), 305–333. https://doi.org/10.1016/j.cjph.2022.04.015 doi: 10.1016/j.cjph.2022.04.015
    [21] S. Ramakrishnan, A. K. Singh, Stochastic dynamics of a nonlinear vibration energy harvester subjected to a combined parametric and external random excitation: the distinct cases of Itô and Stratonovich stochastic integration, Int. J. Non-Linear Mech., 162 (2024), 104700. https://doi.org/10.1016/j.ijnonlinmec.2024.104700 doi: 10.1016/j.ijnonlinmec.2024.104700
    [22] F. Badshah, K. U. Tariq, A. Bekir, R. N. Tufail, H. Ilyas, Lump, periodic, travelling, semi-analytical solutions and stability analysis for the Ito integro-differential equation arising in shallow water waves, Chaos Solitons Fract., 182 (2024), 114783. https://doi.org/10.1016/j.chaos.2024.114783 doi: 10.1016/j.chaos.2024.114783
    [23] K. K. Ali, K. R. Raslan, A. A. E. Ibrahim, M. S. Mohammad, Exploring the dynamics of nonlocal coupled systems of fractional $q$-integro-differential equations with infinite delay, Heliyon, 10 (2024), e33399. https://doi.org/10.1016/j.heliyon.2024.e33399 doi: 10.1016/j.heliyon.2024.e33399
    [24] Z. M. Alaofi, K. R. Raslan, A. A. E. Ibrahim, K. K. Ali, Comprehensive analysis on the existence and uniqueness of solutions for fractional $q$-integro-differential equations, J. Supercomput., 80 (2024), 23848–23866. https://doi.org/10.1007/s11227-024-06305-4 doi: 10.1007/s11227-024-06305-4
    [25] A. R. A. Alanzi, S. S. Alshqaq, R. Fakhfakh, A. B. Makhlouf, Existence and uniqueness results for a class of fractional integro-stochastic differential equations, Fractal Fract., 9 (2025), 1–14. https://doi.org/10.3390/fractalfract9010042 doi: 10.3390/fractalfract9010042
    [26] T. Gunasekar, P. Raghavendran, K. S. Nisar, Existence, uniqueness, and stability results of fractional Volterra-Fredholm integro-differential equations with state-dependent delay, Qual. Theory Dyn. Syst., 24 (2025), 54. https://doi.org/10.1007/s12346-024-01185-8 doi: 10.1007/s12346-024-01185-8
    [27] Z. Bekri, S. Aljohani, M. E. Samei, A. Akgul, A. Belhenniche, A. Aloqaily, et al., Unique solution analysis for generalized Caputo-type fractional BVP via Banach contraction, Eur. J. Pure Appl. Math., 18 (2025), 5979. https://doi.org/10.29020/nybg.ejpam.v18i2.5979 doi: 10.29020/nybg.ejpam.v18i2.5979
    [28] A. A. Kilbas, H. M. Srivastava,, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006.
    [29] Q. H. Ansari, D. R. Sahu, Fixed point theory and variational principles in metric spaces, Cambridge University Press, 2023. https://doi.org/10.1017/9781009351430
    [30] X. W. Su, L. D. Liu, Existence of solution for boundary value problem of nonlinear fractional differential equation, Appl. Math. J. Chin. Univ., 22 (2007), 291–298. https://doi.org/10.1007/s11766-007-0306-2 doi: 10.1007/s11766-007-0306-2
    [31] K. H. Hussain, A. A. Hamoud, N. M. Mohammed, Some new uniqueness results for fractional integro-differential equations, Nonlinear Funct. Anal. Appl., 24 (2019), 827–836.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(427) PDF downloads(29) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog