AIMS Mathematics, 10(9): 21916-21928.
DOI: 10.3934/math.2025976
AIMS Mathematics Received: 18 May 2025

Revised: 17 August 2025

Accepted: 09 September 2025
https://www.aimspress.com/journal/Math Published: 22 September 2025

Research article

Existence and uniqueness of solutions for fractional Volterra-Fredholm
equations in Banach spaces of order n € (1,2)

Mdi Begum Jeelani'*, Farva Hafeez’> and Nouf AbdulRahman Alqgahtani'

! Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic
University (IMSIU), Riyadh

2 Department of Mathematics and Statistics, University of Lahore, Sargodha, Pakistan

* Correspondence: Email: mbshaikh@imamu.edu.sa.

Abstract: The primary objective of this paper is to investigate and establish existence and uniqueness
results for solutions of nonlinear Volterra-Fredholm integro-differential equations (VFIDEs) of
fractional order, specifically for 1 < n < 2. By leveraging fixed-point theorems and contraction
mapping principles within Banach spaces, we derive comprehensive results for both one-dimensional
and two-dimensional nonlinear fractional-order equations. By presenting sufficient conditions, we
ensure the existence and uniqueness of a fixed point associated with the operator form of the
VFIDEs. Our analysis provides a rigorous framework for understanding the behavior of such equations,
and the results obtained in this study enhance our knowledge of fractional integro-differential
equations (FIDEs). To illustrate the practical application of these theoretical results, two examples
are provided that demonstrate the uniqueness of solutions.
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1. Introduction

Fractional integro-differential equations (FIDEs) represent a powerful mathematical framework
for modeling complex systems with memory effects and non-local phenomena. By combining
fractional calculus and integro-differential operators, FIDEs can capture the intricate dynamics of
systems in various fields. FIDEs have numerous applications across various fields, including physics,
biology, engineering, finance, and materials science. In physics, Kumar et al. [1] introduced
a novel Morgan-Voyce collocation technique for solving FIDEs involving Caputo and Atangana-
Baleanu derivatives, demonstrating its effectiveness in modeling complex physical systems such
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as viscoelastic materials, oscillatory processes with memory, and nonlinear optical phenomena.
In the biological sciences, Abro et al. [2] presented a detailed analysis of plasma dilution using
FIDEs, demonstrating their effectiveness in modeling complex biological processes. In the field of
engineering, Raghavendran et al. [3] applied artificial neural networks to investigate the existence
and controllability of solutions for impulsive fractional VFIDEs, highlighting the power of hybrid
computational techniques. In the context of finance, Ali et al. [4] explored stochastic fractional
differential equations in a financial context, presenting a dynamic competition model solved efficiently
via the pseudospectral method.

Recent advances in the study of FIDEs have significantly expanded their theoretical foundations and
practical applications. Several notable works in 2024 have contributed to this progress. For instance,
Sadek [5] developed advanced fractional backward differentiation methods to solve two-term fractional
differential Sylvester matrix equations, enhancing computational techniques in the field. Zhai et al. [6]
investigated positive solutions for a novel system of Hadamard FIDEs on infinite intervals, providing
new insights into existence theory for such systems. Moreover, Obukhovskii et al. [7] explored the
topological properties of solution sets for semi-linear fractional differential inclusions with non-convex
right-hand sides, enriching the understanding of solution behavior in fractional differential inclusions.
Additionally, Alsallami et al. [8] investigated the dynamics of fractional g-integro-differential equations
with infinite time delays, which offer new mathematical perspectives on time-dependent models.
Furthermore, Raghavendran et al. [9] applied artificial neural networks to study the existence and
controllability of impulsive fractional VFIDEs, demonstrating their application in solving real-world
complex problems.

The benefits of FIDEs lie in their ability to accurately model complex systems that traditional
differential equations cannot, enabling better understanding, prediction, and decision-making.
Guran et al. [10] applied fixed point results to nonlinear fractional and integral differential
equations. El Ghazouani et al. [11] studied nonlinear fuzzy fractional VFIDEs and established results
concerning the existence, uniqueness, and Ulam-Hyers stability of solutions. Albugami et al. [12]
focused on two-dimensional fractional nonlinear Fredholm integro-differential equations, presenting
computational methods and proving the existence and uniqueness of their solutions. Integro-differential
equations (IDEs) are evolution equations that combine differential and integral terms, describing
complex systems where the rate of change of a function depends on its past values and integrals.

Bicer et al. [13] developed a numerical method using Boole polynomials for functional IDEs with
hybrid delays. Miah et al. [14] proved existence and uniqueness for two-dimensional fractional-
order nonlinear IDEs with delay. Adebisi et al. [15] applied the Chebyshev least square method
to solve VFIDEs. Kumar et al. [16] developed product integration techniques tailored for solving
FIDEs, offering improved accuracy and stability in handling nonlocal operators. Researchers such as
Alvi et al. [17] and [18], Singh et al. [19] and [20], Ramakrishnan et al. [21], and Badshah et al. [22]
have made significant contributions to the development of FIDEs, advancing our understanding of their
theoretical foundations, numerical solution methods, and applications.

Researchers have continued to advance the field, exploring new applications and refining existing
methods, such as Ali et al. [23], who explored the dynamics of nonlocal coupled systems of fractional
g-1DEs with infinite delay, and Alaofi et al. [24], who provided a comprehensive analysis on the
existence and uniqueness of solutions for fractional g-IDEs. Their work has paved the way for the
application of FIDEs in diverse disciplines, enabling the modeling and analysis of complex systems
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that exhibit non-local behavior and memory effects. Alanzi et al. [25] focused on proving the existence
and uniqueness of solutions to fractional integro-stochastic differential equations, utilizing methods
from fixed-point theory and stochastic processes. Gunasekar et al. [26] explored fractional VFIDEs
involving state-dependent delays and established key results concerning solution existence, uniqueness,
and various stability properties, such as Ulam-Hyers stability. Bekri et al. [27] studied unique solutions
for Caputo-type fractional BVPs using Banach contraction. This work extends their results to more
general FIDEs with broader kernel and integral conditions.

Future research is expected to focus on the potential of FIDEs in emerging areas such as quantum
computing, artificial intelligence, and climate modeling. Additionally, scientists will explore novel
numerical schemes and machine learning-based approaches to solve these equations, and achieve more
accurate and efficient simulations. As the field continues to evolve, new applications are anticipated in
areas such as personalized medicine, sustainable energy, and advanced materials, driving innovation
and discovery in the years to come. The increasing relevance of fractional calculus in modeling real-
world phenomena has driven the need for more advanced methods to solve nonlinear VFIDEs of
fractional order. In particular, for fractional orders 1 < n < 2, the complexity of these equations
presents significant challenges in terms of existence and uniqueness of solutions.

This paper seeks to address these challenges by providing a comprehensive framework for proving
the existence and uniqueness of solutions for both one-dimensional and two-dimensional nonlinear
VFIDEs. By applying fixed-point theorems and contraction mapping principles in Banach spaces, we
derive new sufficient conditions that ensure the existence of a unique solution. Our results enhance
the theoretical understanding of fractional-order integro-differential equations and pave the way for
their application in diverse scientific fields. The motivation for this work lies in the growing need for
robust mathematical tools to model complex systems that exhibit nonlocal behavior, memory effects,
and hereditary properties—features that are often captured by fractional-order models. The methods and
results presented here will contribute to the broader understanding of fractional dynamics and provide
a foundation for future work in both applied and theoretical contexts.

Building on previous research, this study presents novel uniqueness results for a class of Caputo
FIDEs (CFIDEs), specifically the Volterra-Fredholm type, which is characterized by its distinctive
integral structure:

q
gD?b(z, 1) = Ab(z,t) + fﬂ o, t,b(Z,1)d7 + f Q'(Z,t,b(Z,1)d7, (1.1)
p

p

a ot gt
CDMb(z,1) = Ab(z, 1) + f f O, 1,b(Z, 1) d7 ds + f f Q'(Z,1,b(Z, 1) d7 ds, (12)
p 0 P 0

with initial conditions
b(z,0) = by(z), b'(z,0) — k(b) = b,(2), (1.3)

where OCDf be the Caputo fractional derivative (CFD) of order 1 < n < 2, t € [0,7], k : C:([p, gl X
[0,7]) — Ci([p,q] x[0,7]) be the continuous function, and A be the constant coefficient.

The organization of this paper is as follows: Section 2 outlines fundamental concepts and lemmas
in fractional calculus. Section 3 establishes novel results on the existence and uniqueness of solutions
for a specific type of CFIDEs. In Section 4, two examples are presented to concretely demonstrate the
uniqueness of solutions. Finally, Section 5 provides a summary and concluding remarks.
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2. Preliminaries

Fractional derivatives and integrals have multiple mathematical definitions, with various
approaches. The RL and Caputo derivatives are among the most commonly used definitions in
fractional calculus. We present key definitions that will be applied throughout this paper.

Definition 2.1. [28] For n > 0, the fractional integral is given by
1 !
['b(z,1) = — f (t = $)T'b(z, s)ds, € RY,
- o J, !

where R* denotes the set of positive real numbers.
Definition 2.2. [28] For a function l(z,t), the CFD of order n can be expressed as

1 [( w—n—10"1(z,s)
—— | (t =)V —=ds, w—1l<np<w,
Dl = {”W"” ) g

9" l(z,1) _
T n=w, weN.

In this context, n denotes the order of the derivative, potentially real or complex.

We restrict our analysis to real and positive 7, leading to the properties outlined below:
(1) ,L,L!(z) = L"™"I(z), n,u < 0.
(2) pLYI(2) = Tl ().
(3) p D) = Flts P 1(2), 1> 0, > —1.
@) L] D) = I(2) = 255 19O, 1> 0.

Definition 2.3. [29] A mapping T : P — P on a normed space (P,||.||«) has a fixed point y € P if
Ty =y.

Definition 2.4. [30] A mapping T on a normed space (P, ||.||) is contractive if there exists a constant
v € (0,1), so that

ITy — Thllew < Vlly = hlleo, ¥ y,h€P.
Lemma 2.1. [31] Using Definitions 2.1 and 2.2, let b € C,([p, q] X [0, T 1) have continuous nth-order
partial derivatives with respect to t. Then, b(z,t) is the solution of (1.1)—(1.3) if and only if b satisfies

b(z,n) = bO(Z)+bm(Z)+k(b)+OInb(Z’t)+_ f (t—S)”_l[ fﬂ O, s,b(Z, $))dz’
r() 0 p

q
+f Q' (,s, b(z’,s))dz’]ds, belp,ql, t€[0,7].
p

Lemma 2.2. [31] By using Definitions 2.1 and 2.2, let b € C,([p,q] X [0,T]) be a function with
continuous nth-order partial derivatives in t. Then, b(t) is a solution of (1.2)-(1.3) if and only if b
satisfies

b(z,1) = bo(2) + bu(z) + k(b) + oI'b(z, 1) + mf f f (t=O"'Q(, 5,b(Z, 5)dsd7 dL

g 4
+Lf f f t=0"'Q(, 5,b(Z,s))dsd di.
I Jo Jp, Jo
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3. Main results

We present existence and uniqueness results for Eqs (1.1) and (1.2) with the initial condition from
Eq (1.3). Our analysis relies on the following assumptions:

(Ry) Assume there exist positive constants M; and M, such that the following holds for all
bla bZ € Ct([pa Q] X [O’ T])

102, 5,b1(Z, 5)) — O, 5,b2(Z, )| < M|by — bal,
Q' (7, 5,b1(Z, 8)) — Q' (7, 5,b2(Z, 5))| < Maby — byl

(R,) Assume that k satisfies |k(b)| < K for some K > 0 and for all b € C,([p, q] X [0,7T]).
(R3) There exists a constant K such that [k(b,) — k(b,)| < K|b, — b,| for all by, b, € C,([p, q] X
[0,77D).

A

Remark 3.1. The Lipschitz assumptions (Ry), (R,), and (R3) are standard for applying the Banach
fixed point theorem and are realistic for many smooth kernels in theory and applications. However,
these conditions can be restrictive when dealing with non-smooth, discontinuous, or singular kernels
commonly found in real-world models. Such limitations may reduce the direct applicability of the
current theorem. Extending the results to handle non-Lipschitz kernels remains a topic for future
research.

Theorem 3.1. Suppose that assumptions (R;), (R,), and (R3) hold. If

- Tq— p)M; + M)
K+ T+ 1) ] L

then the FIDEs (1.1)—(1.3) possess a unique solution.

Proof. According to Lemma 2.1, the function b is the solution of (1.1)—(1.3) if and only if b satisfies
the following equation:

bzt) = bo(@) + bn (Z)+k(b)+ol"b(z,t)+% (t—s)"-‘[ f 0, 5,b(Z, ) d7
)4
q
+ f 0, 5,b(Z, ) dz']ds,
)4

by transformation, we convert the Cauchy problem (1.1)—(1.3) into a fixed-point problem and consider
the operator 7 : C,([p,q] X [0,7]) — C«([p,q] X [0,7]) defined as

(TD)z1) = bo(Z)+bm(Z)+k(b)+oI"b(Z,t)+m f (t—sy! f O, 5,b(z, 8)) dz’

q
+ f Q'(Z,s,b(Z,s)) dz’] ds.
p

Thus, if b is a fixed point of 7 by Definition 2.3, then b satisfies (1.1)—(1.3). To show that 7 has a
fixed point b € C:([p, q] X [0, 7)), consider by, b, € C/([p, q] X [0, 7]) such that

bz, 1) = bo(Z)+bm(Z)+/<(1?1)+01'7b(z,t)+mf(t—S)”l f O, 5,01(Z,5))d’
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q
+f 0'(Z,s,bi(Z,s)) dz’] ds

p

as well as

by(z, 1) = bo(z) + by (Z)+k(bz)+ol"b(z,t)+% (I—S)”_l[ f O, 5,b2(2, 5)) d2’
p

q
+ f Q'(Z,s,by(7, 9)) dz'] ds.
p

Consequently, we get
I(Tb1)(z, 1) = (T b2)(z, 1)l

bo(Z)+bm(Z)+k(b1)+oI"b(Z,f)+m f (b sy

a q
X[f o, s,b1(Z,s)d7 + f 0'(Z,s,b1(Z,9)) dz'] ds
14 P

IA

q
—bo<z>—bm<z>—k<bz>—ol?b(z,t)x[ f 0, 5,b2(7, $)) de + f 07, 5,bx(, s))dz']ds
p P

1 ! a
< Wb~ kbol+ [ -9 [ 10 s b e
F(U) 0 p
q
—0(Z, 5,b2(7, 9))] d7 + f [Q'(Z, 5,017, 5)) = Q'(Z, 5,b2(Z, )] dZ'] ds
< k|b] b2| + mf(f S)I7 1 M1|b1(z S) bz(Z S)|dZ f leb](Z S) bZ(Z S)le
(M + M) ¢ ]
K+———(@-pl|b—-b
< R T @ b=
_ (M + My)(g—p)TT"
< [K+( 1+ Mo)(g — p) ]|b1—b2|,
I'n+1)
which indicates that
(M + M>)( )T
(T B0 ) = (Tha)e Dl < | R+ 2P iy —
I'(n+1)
since %# < 1, it follows that 7~ is a contractive mapping (see Definition 2.4) which implies
the existence of a unique fixed point. Hence, Eq (1.1) has a unique solution. O

Remark 3.2. The assumptions (R;), (R,), and (R3) impose Lipschitz continuity conditions on the
nonlinear functions Q and Q’, and k, ensuring boundedness and controlled behavior of the operator T .
These conditions are essential to establish that T is a contraction mapping on the space C,([p, q] X
[0,771). Moreover, the constraint

(M, + M>)(g —p)T"

I(n+1)

reflects the requirement of a sufficiently small time interval T to guarantee the unique solvability of
the FIDEs system. This approach aligns with standard techniques in fractional differential equations

<1,
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where local existence and uniqueness are established via fixed-point theory. Moreover, when Q and Q'
are globally Lipschitz in their third argument, M, and M, can be estimated by bounding their partial
derivatives with respect to b, making the condition practical and verifiable.

Theorem 3.2. Suppose that assumptions (R,), (R,), and (R3) hold. If

T (g — p)(Mi + M)
T(n+2)

K+ <1,

then the FIDEs (1.2)-(1.3) possess a unique solution.

Proof. According to Lemma 2.2, the function b is a solution of (1.2)-(1.3) if and only if b satisfies the
following equation given below:

b(z,1) = bO(Z)+bm(Z)+k(b)+OInb(Z’I)+m f f f (="' 0, 5,b(Z, 5)) ds d7 d¢

t rq g
+Lf f f (t_{)n_lQ,(Z’, S, b(Z,9 s))deZ, d{a
L' Jo Jp Jo

by transformation, we convert the Cauchy problem (1.2)-(1.3) into a fixed-point problem and consider
the operator 7 : C,([p,q] X [0,7]) — C:([p,q] X [0,7]) defined as follows:

TBt) = bo(Z)+bm(Z)+k(b)+OInb(Z’f)+m f f f (1= O™ O, 5. b2, 8)) dsd? di

g d
+L f f f =m0, 5,b(Z, s)dsd7 di.
() Jo p JO

Thus, if b is a fixed point of 7, then, by Definition 2.3, b satisfies (1.2)-(1.3). To show that 7 has a
fixed point b € C,([p, q] X [0, 7T7]), consider by, b, € C,([p, q] X [0,7]). So we obtain

b = bo(Z)"'bm(Z)+k(bl)+olnb(z,t)+m f f f (1 0" Q. 5. b1 ) ds de’ di
1 e
+_ff f(t_{)n_lQ,(Z,’ S,bl(Z,,S))deZ’df,
L Jo Jp Jo
as well as
by(z, 1) = bo(Z)+bm(Z)+k(b2)+olnb(z,t)+mf ff(t— OO, s,by(Z, 8))ds d7 d

1 q e
+L f f f (t="'Q(Z, 5, by(Z, 5)dsd7 dC.
I'm Jo Jp, Jo

Hence, we have
I(Tb1)(z, 1) = (T b2)(z, D)

bo(z) + bpu(2) + k(by) + ol7b(z, 1) + —f faf =00, s,bi(Z, s))dsdz di

<
['(n)
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t g g
+%77) f f f t—O"'Q'(Z, 5,b1(Z, 8))ds dZ dl — bo(z) — bu(z) — k(b2) — o17b(z, 1)

F(n)ff f(t_@" 'O, 5,by(2, 5)) dsd? d
F(n)ff f(t_ OO, s,ba(7, 8))ds dZ dL

—fff(f—f)n_l[Q(Z',S,bl(Z',S))—Q(Z',S,bz(Z',S))]deZ'df
T Jo Jp, Jo

IA

lk(b) — k(bo)| +

f g
+L f f f (t— g)”_l[Q’(Z’, S’bl(Z,, s)) — Q,(Z,, s, bz(Z’, )] ds d7 d{
L' Jo

Kb, - bz|+mfff(l— O Mb(Z, 5) — ba(Z, s)| dsdZ d¢

+Lf f f (t — {)Tl—lelbl(Z/’ S) _ b2(Z/, S)| deZ’ dé’
o J, Js

_ (M, + M) !
[ TSI P o

[+ Ot Ve —p7!
I'(n+2)

IA

IA

]|b1 by,

this implies that

L My + Mo)g - p7"!
I'(n+2)

I(T"b1)(z, 1) = (T b2)(z, Dlleo < [ 11 = b2l

—_— +l . . . . .o, . . . .
since (MJMFZ()(—‘]W < 1, it follows that 7 is a contractive mapping by Definition 2.4, which implies
n+2)

the existence of a unique fixed point. Hence, (1.2) has a unique solution. O
4. Examples

Example 1. Consider the FIDE withn = =

t pa t g
Dib(z,1) = Ab(z, 1) + f f 0, s,b(Z,5))dsdz + f f Q'(Z,s,b(Z,5))dsdZ,
0 4 0 P
subject to the initial conditions
ob
b(z,0) = bo(2), 8—Z(z 0) — k(D) = bu(2).

To ensure the uniqueness of the solution, we verify the condition from Theorem 3.1

(72(61 P)(M, + M)
r3)

<1,
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where M| = @, M, = 3, and K = v are positive constants. Choosingy = 0.2, « = 0.1, 8 =0.1, 7 = 2,
and g — p = 1. Using F(%) ~ 1.33, the inequality becomes
23(1)(0.1 +0.1)

0.2+ 133 <1, 0.2+0.425=0.625 <1,

which satisfies the uniqueness condition. Thus, by Theorem 3.1, the equation admits a unique solution.
To capture realistic phenomena, the kernels are specified as

07, s,b) = sin()b(Z, 5), Q(Z,s,b)=e"bZ,s),

modeling oscillatory and exponentially decaying memory effects, respectively. The initial conditions
correspond to the value and the first time derivative of b at ¢ = 0. Since the fractional derivative order
is %, two initial conditions are necessary. Using the Taylor expansion

b(z, h) = bo(2) + h[k(bo(2)) + bu(2)],

we obtain the starting value for the numerical scheme at the first time step 4. A fractional Adams-
Bashforth-Moulton predictor-corrector method is implemented to solve the equation numerically on
t € [0,2] with step size h = 0.02. The integral terms are approximated via quadrature rules. The
iterative scheme updates the function b as

3 n

= > @ if ).

h2
Jj=0

r'Q)
t a ! q ,
f(t,b):yb+ff sin(z')b(z',s)dsdz’+ff e b(Z,s)dsd7 .
0 Jp 0 Jp

The numerical results indicate that the solution behaves regularly, exhibiting memory effects and spatial
interactions consistent with the kernel structure and fractional order. Due to the fractional dynamics,
the solution evolves more slowly than its integer-order counterparts while remaining bounded and
stable. These results validate the theoretical findings.

Hence, the problem is well-posed with a unique solution under the chosen parameters, and the
simulations confirm the model’s applicability to real-world fractional systems.
Example 2. Consider the FIDE with n = %:

¢ 4 t g g
CD%b(z, 1) = Ab(z, 1) + f f f 0, s,b(Z,s))dsd7 dl + f f f Q'(Z,s,b(Z,s))dsd7 di,
0 Jp JO 0 Jp Jo

subject to the initial conditions

b, = by +

where

ob
b(z,0) = bo(2), a—z(z, 0) — k(b) = byu(2).
To ensure the uniqueness of the solution, we verify the condition from Theorem 3.2

3+l¢, _
7o T+ (q p)9(M1 + M>)
;)

<1,
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where M; = a, M, = 8 and K = v are positive constants. Choosing y = 0.1, @ = 0.13, 8 = 0.12,
7 =15,andg - p = 1. Using 1"(%) ~ 1.754, the inequality becomes
1.53(1)(0.13 + 0.12)

0.1 + 754 <1, 0.1+0.289=0.389 < 1.

Thus, the condition is satisfied, and by Theorem 3.2, the equation admits a unique solution. To model
realistic effects, we choose the kernels as

N

0, s,b) = cos()e™*b(Z,5), Q'(Z,s,b) =
1+ 52

b(Z, s).

The kernel Q represents damped spatial oscillations, while Q' reflects saturating memory growth

behavior, often observed in viscoelastic systems. Since 7 = % € (1,2), two initial conditions are

required. The Taylor expansion provides the first time-step approximation
b(z, h) = by(2) + h[k(bo(2)) + bu(2)].

A fractional Adams-Bashforth-Moulton predictor-corrector scheme is used on ¢ € [0, 1.5] with step
size h = 0.015. The integrals are approximated via numerical quadrature. The scheme updates the

solution using
5 n

. Z an—;f(t;, b)),

J=0

bn = l’)() + —
r3)

where

¢ 4 t g g
f(t,b) = yb + f ff cos(z)e *b(Z, s)dsd7 di + f f f > b(Z,s)dsdz di.
0o Jp Jo 0o Jp Jo 1+ 52

Numerical simulations reveal a slowly evolving solution with visible memory effects, especially due
to the fractional order and nested integrals.

These observations validate the theoretical findings and show that the problem is well-posed under
the chosen parameters. The model is suitable for capturing complex fractional dynamics in real-world
applications.

5. Conclusions

This study’s primary objective was to establish novel existence and uniqueness criteria for solutions
to Caputo fractional VFIDESs, thereby advancing our understanding of these complex mathematical
models. By leveraging the fixed point theorem in Banach spaces, contraction mapping principles, and
exploring the intricacies of fractional calculus within the specified order of 1 < n < 2, we derived
significant results that shed new light on the behavior of such equations in one- and two-dimensional
spaces. These findings not only contribute to the theoretical foundations of fractional differential
equations but also pave the way for future research in this domain, enabling the development of
innovative solutions to real-world problems. The methodologies employed in this paper demonstrate
the potential for further exploration and application in solving complex problems involving FIDEs,
with potential implications for fields such as physics, engineering, and economics. Furthermore,
the results obtained in this study lay the groundwork for future investigations into the properties and
applications of Caputo fractional VFIDESs, underscoring the value of continued research in this area.
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