This paper investigates a class of variational inequality problems governed by double-phase degenerate parabolic operators on cylindrical domains within bounded open sets, which arises from sensitivity analysis of quanto option valuation. The main result establishes max-norm regularity estimates for gradient solutions of the variational inequality.
Citation: Wenwen Jiang, Jia Li. Local max-norm regularity estimates for gradient solutions of variational inequalities involving a class of doubly degenerate parabolic operators arising from quanto option valuation analysis[J]. AIMS Mathematics, 2025, 10(9): 21902-21915. doi: 10.3934/math.2025975
This paper investigates a class of variational inequality problems governed by double-phase degenerate parabolic operators on cylindrical domains within bounded open sets, which arises from sensitivity analysis of quanto option valuation. The main result establishes max-norm regularity estimates for gradient solutions of the variational inequality.
| [1] |
A. Battauz, M. D. Donno, A. Sbuelz, On the exercise of American quanto options, N. Am. J. Econ. Financ., 62 (2022), 101738. https://doi.org/10.1016/j.najef.2022.101738 doi: 10.1016/j.najef.2022.101738
|
| [2] |
H. Zhou, D. Dang, Numerical analysis of American option pricing in a two-asset jump-diffusion model, Appl. Numer. Math., 216 (2025), 98–126. https://doi.org/10.1016/j.apnum.2025.03.005 doi: 10.1016/j.apnum.2025.03.005
|
| [3] |
W. Lu, C. Jiang, Z. Wang, Y. Ding, X. Ni, Incorporating metadata: A novel variational neural topic model for bond default prediction, Inf. Sci., 715 (2025), 122219. https://doi.org/10.1016/j.ins.2025.122219 doi: 10.1016/j.ins.2025.122219
|
| [4] |
N. H. Tuan, A. T. Nguyen, N. H. Can, Existence and continuity results for Kirchhoff parabolic equation with Caputo–Fabrizio operator, Chaos Solitons Fract., 167 (2023), 113028. https://doi.org/10.1016/j.chaos.2022.113028 doi: 10.1016/j.chaos.2022.113028
|
| [5] |
S. Ge, R. Yuan, X. Zhang, Global existence, blow-up and dynamical behavior in a nonlocal parabolic problem with variational structure, Nonlinear Anal. Real World Appl., 76 (2024), 104007. https://doi.org/10.1016/j.nonrwa.2023.104007 doi: 10.1016/j.nonrwa.2023.104007
|
| [6] |
K. Song, Gradient estimates for irregular obstacle problems with measure data, J. Math. Anal. Appl., 545 (2025), 129168. https://doi.org/10.1016/j.jmaa.2024.129168 doi: 10.1016/j.jmaa.2024.129168
|
| [7] |
S. Byun, S. Ryu, Gradient estimates for nonlinear elliptic double obstacle problems, Nonlinear Anal., 194 (2020), 111333. https://doi.org/10.1016/j.na.2018.08.011 doi: 10.1016/j.na.2018.08.011
|
| [8] |
Q. Zhao, The $ L^{\infty} $ estimate of the spatial gradient of the solution to a variational inequality problem originates from the financial contract problem with advanced implementation clauses, AIMS Math., 9 (2024), 35949–35963. https://doi.org/10.3934/math.20241704 doi: 10.3934/math.20241704
|
| [9] |
R. Arora, S. Shmarev, Global gradient estimates for solutions of parabolic equations with nonstandard growth, J. Math. Anal. Appl., 549 (2025), 129582. https://doi.org/10.1016/j.jmaa.2025.129582 doi: 10.1016/j.jmaa.2025.129582
|
| [10] |
S. Byun, K. Kim, D. Kumar, Gradient estimates for mixed local and nonlocal parabolic problems with measure data, J. Math. Anal. Appl., 538 (2024), 128351. https://doi.org/10.1016/j.jmaa.2024.128351 doi: 10.1016/j.jmaa.2024.128351
|
| [11] |
X. R. Olivé, S. Seto, Gradient estimates of a nonlinear parabolic equation under integral Bakry-Émery Ricci condition, Diff. Geom. Appl., 98 (2025), 102222. https://doi.org/10.1016/j.difgeo.2024.102222 doi: 10.1016/j.difgeo.2024.102222
|
| [12] |
L. Zhao, S. Zheng, Higher fractional differentiability for solutions to parabolic equations with double-phase growth, Nonlinear Anal. Real World Appl., 84 (2025), 104270. https://doi.org/10.1016/j.nonrwa.2024.104270 doi: 10.1016/j.nonrwa.2024.104270
|
| [13] |
W. Kim, K. Moring, L. Särkiö, Hölder regularity for degenerate parabolic double-phase equations, J. Differ. Equ., 434 (2025), 113231. https://doi.org/10.1016/j.jde.2025.113231 doi: 10.1016/j.jde.2025.113231
|
| [14] |
E. Henriques, Local Hölder continuity to a class of doubly singular nonlinear evolutionary equations, J. Math. Anal. Appl., 518 (2023), 126676. https://doi.org/10.1016/j.jmaa.2022.126676 doi: 10.1016/j.jmaa.2022.126676
|