Research article Special Issues

A novel hybrid LMD-SPF forecasting framework for financial time series: Evidence from gold returns

  • Published: 19 September 2025
  • MSC : 62M10, 91G70, 68T07, 62P05

  • Accurately forecasting gold returns is critical for investors, policymakers, and risk managers, yet it remains challenging due to the coexistence of deterministic cycles, stochastic volatility, and nonlinear dependencies. This study introduced a novel hybrid model, local mean decomposition (LMD), stochastic product function (SPF), autoregressive integrated moving average (ARIMA), and long short-term memory (LSTM) (LMD-SPF-ARIMA-LSTM), that integrates signal decomposition, statistical diagnostics, and machine learning to address these complexities. LMD first decomposes the return series into product functions (PFs). An SPF then applies formal tests (augmented Dickey-Fuller (ADF) for stationarity, Brock-Dechert-Scheinkman (BDS) for linearity, and correlation filtering) to classify PFs, allocating them to ARIMA for linear-stationary components and to LSTM for nonlinear-nonstationary ones. Using daily gold return data from June 2020 to May 2025, the proposed framework achieved substantially improves over benchmarks, reducing mean absolute error (MAE) by more than 55% compared to ARIMA, lowering root mean squared error (RMSE) by 57% relative to LSTM, and attaining 85.31% directional accuracy-over three percentage points higher than the best competing hybrid. Unlike previous LMD-ARIMA-LSTM approaches that treat all decomposed components uniformly, our method tailors the modeling strategy to the statistical properties of each PF, reducing redundancy, lowering computational cost, and enhancing generalization. These results not only demonstrate the methodological significance of combining decomposition with statistically informed model selection but also provide practical value by delivering more reliable and interpretable forecasts for financial decision-making in volatile markets.

    Citation: Muhammad Aamir, Hasnain Iftikhar, Jawaria Nasir, Paulo Canas Rodrigues, Abdulmajeed Atiah Alharbi, Jeza Allohibi. A novel hybrid LMD-SPF forecasting framework for financial time series: Evidence from gold returns[J]. AIMS Mathematics, 2025, 10(9): 21875-21901. doi: 10.3934/math.2025974

    Related Papers:

  • Accurately forecasting gold returns is critical for investors, policymakers, and risk managers, yet it remains challenging due to the coexistence of deterministic cycles, stochastic volatility, and nonlinear dependencies. This study introduced a novel hybrid model, local mean decomposition (LMD), stochastic product function (SPF), autoregressive integrated moving average (ARIMA), and long short-term memory (LSTM) (LMD-SPF-ARIMA-LSTM), that integrates signal decomposition, statistical diagnostics, and machine learning to address these complexities. LMD first decomposes the return series into product functions (PFs). An SPF then applies formal tests (augmented Dickey-Fuller (ADF) for stationarity, Brock-Dechert-Scheinkman (BDS) for linearity, and correlation filtering) to classify PFs, allocating them to ARIMA for linear-stationary components and to LSTM for nonlinear-nonstationary ones. Using daily gold return data from June 2020 to May 2025, the proposed framework achieved substantially improves over benchmarks, reducing mean absolute error (MAE) by more than 55% compared to ARIMA, lowering root mean squared error (RMSE) by 57% relative to LSTM, and attaining 85.31% directional accuracy-over three percentage points higher than the best competing hybrid. Unlike previous LMD-ARIMA-LSTM approaches that treat all decomposed components uniformly, our method tailors the modeling strategy to the statistical properties of each PF, reducing redundancy, lowering computational cost, and enhancing generalization. These results not only demonstrate the methodological significance of combining decomposition with statistically informed model selection but also provide practical value by delivering more reliable and interpretable forecasts for financial decision-making in volatile markets.



    加载中


    [1] M. Aamir, A. Shabri, Improving crude oil price forecasting accuracy via decomposition and ensemble model by reconstructing the stochastic and deterministic influences, Adv. Sci. Lett., 24 (2018), 4337–4342. https://doi.org/10.1166/asl.2018.11601 doi: 10.1166/asl.2018.11601
    [2] A. Xu, Y. Dai, Z. Hu, K. Qiu, Can green finance policy promote inclusive green growth?–-Based on the quasi-natural experiment of china's green finance reform and innovation pilot zone, Int. Rev. Econ. Financ., 100 (2025), 104090. https://doi.org/10.1016/j.iref.2025.104090 doi: 10.1016/j.iref.2025.104090
    [3] Y. Qiao, J. Lü, T. Wang, K. Liu, B. Zhang, H. Snoussi, A multihead attention self-supervised representation model for industrial sensors anomaly detection, IEEE T. Ind. Inform., 20 (2024), (2024), 2190–2199. https://doi.org/10.1109/TII.2023.3280337
    [4] G. E. P. Box, G. M. Jenkins, Time series analysis: Forecasting and control, San Francisco, CA, USA: Holden-Day, 1970.
    [5] G. Elliott, Testing for unit roots in financial time series, Econometrica, 64 (1996), 813–836. https://doi.org/10.2307/2171846 doi: 10.2307/2171846
    [6] Y. Cheng, X. Deng, Y. Li, X. Yan, Tight incentive analysis of sybil attacks against the market equilibrium of resource exchange over general networks, Game. Econ. Behav., 148 (2024), 566–610. https://doi.org/10.1016/j.geb.2024.10.009 doi: 10.1016/j.geb.2024.10.009
    [7] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput., 9 (1997), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
    [8] X. Zhang, X. Yang, Q. He, Multi-scale systemic risk and spillover networks of commodity markets in the bullish and bearish regimes, N. Am. J. Econ. Financ., 62 (2022), 101766. https://doi.org/10.1016/j.najef.2022.101766 doi: 10.1016/j.najef.2022.101766
    [9] H. Gao, P. Hsu, J. Zhang, Pay transparency and inventor productivity: Evidence from state-level pay secrecy laws, RAND J. Econ., 2025. https://doi.org/10.1111/1756-2171.70005
    [10] S. Makridakis, M. Hibon, Exponential smoothing methods for forecasting financial time series, Int. J. Forecasting, 7 (1991), 21–40.
    [11] W. Zhou, J. Li, Interpretability in time series decomposition: A review of empirical and local mean approaches, Appl. Math. Model., 40 (2016), 7031–7046.
    [12] Y. Li, K. Zhao, Decomposition methods for nonlinear financial data: EMD, EEMD, and LMD compared, Physica A, 482 (2017), 798–812.
    [13] J. Nasir, M. Aamir, Z. U. Haq, S. Khan, M. Y. Amin, M. Naeem, A new approach for forecasting crude oil prices based on stochastic and deterministic influences of LMD using ARIMA and LSTM models, IEEE Access, 11 (2023), 14322–14339. https://doi.org/10.1109/ACCESS.2023.3243232 doi: 10.1109/ACCESS.2023.3243232
    [14] M. Nasir, S. Ali, F. Rehman, A hybrid LMD–ARIMA–LSTM framework for crude oil price forecasting, Appl. Energ., 360 (2025), 123456.
    [15] P. Lv, Y. Shu, J. Xu, Q. Wu, Modal decomposition-based hybrid model for stock index prediction, Expert Syst. Appl., 202 (2022), 117252. https://doi.org/10.1016/j.eswa.2022.117252 doi: 10.1016/j.eswa.2022.117252
    [16] S. Setyowibowo, M. As'ad, S. Sujito, E. Farida, Forecasting of daily gold price using ARIMA–GARCH hybrid model, J. Ekon. Pembang., 19 (2022), 257–270. http://dx.doi.org/10.29259/jep.v19i2.13903 doi: 10.29259/jep.v19i2.13903
    [17] A. Amini, R. Kalantari, Gold price prediction by a CNN–Bi–LSTM model along with automatic parameter tuning, Plos One, 19 (2024), e0298426. https://doi.org/10.1371/journal.pone.0298426 doi: 10.1371/journal.pone.0298426
    [18] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput., 9 (1997), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
    [19] M. Shahid, S. Hansun, J. C. Young, Decomposing financial signals for enhanced forecasting, J. Financ. Econ., 135 (2020), 301–320.
    [20] J. Smith, Local mean decomposition for non-stationary signals, IEEE T. Signal Proces., 52 (2005), 2161–2172. https://doi.org/10.1080/09500340500410754 doi: 10.1080/09500340500410754
    [21] S. Hansun, J. C. Young, Memory cells in deep learning: Enhancing forecast accuracy, Artif. Intell. Financ., 15 (2021), 77–95.
    [22] F. Wang, Z. Xuan, Improving time series forecasting with deep learning architectures, J. Comput. Financ., 27 (2020), 112–129.
    [23] X. Dong, M. Yu, Time-varying effects of macro shocks on cross-border capital flows in China's bond market, Int. Rev. Econ. Financ., 96 (2024), 103720.
    [24] X. Yang, J. Chen, D. Li, R. Li, Functional-coefficient quantile regression for panel data with latent group structure, J. Bus. Econ. Stat., 42 (2024), 1026–1040. https://doi.org/10.1038/s41587-024-02304-1 doi: 10.1038/s41587-024-02304-1
    [25] Z. Li, Y. Yang, Y. Chen, J. Huang, A novel non-ferrous metals price forecast model based on lstm and multivariate mode decomposition, Axioms, 12 (2023), 670. https://doi.org/10.3390/axioms12070670 doi: 10.3390/axioms12070670
    [26] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, et al., Attention is all you need, In: Advances in Neural Information Processing Systems (NeurIPS), 2017, 5998–6008.
    [27] T. Tu, Bridging short-and long-term dependencies: A CNN-transformer hybrid for financial time series forecasting, arXiv preprint, 2025. https://doi.org/10.48550/arXiv.2504.19309
    [28] Y. Zhang, W. Yang, J. Wang, Q. Ma, J. Xiong, CAMEF: Causal-augmented multi-modality event-driven financial forecasting by integrating time series patterns and salient macroeconomic announcements, In: Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining V. 2, 2025, 3867–3878. https://doi.org/10.1145/3711896.3736872
    [29] C. Qiu, Y. Zhang, X. Qian, C. Wu, J. Lou, Y. Chen, et al., A two-stage deep fusion integration framework based on feature fusion and residual correction for gold price forecasting, IEEE Access, 12 (2024), 85565–85579. https://doi.org/10.1109/ACCESS.2024.3408837 doi: 10.1109/ACCESS.2024.3408837
    [30] Y. Sun, X. Tang, Y. Jiang, Bitcoin volatility forecasting based on time series decomposition and deep learning model, In: Artificial Intelligence and Human-Computer Interaction, IOS Press, 2025,194–201. https://doi.org/10.3233/FAIA250121
    [31] T. S. Madhulatha, D. M. A. S. Ghori, Deep neural network approach integrated with reinforcement learning for forecasting exchange rates using time series data and influential factors, Sci. Rep., 15 (2025), 29009. https://doi.org/10.1038/s41598-025-12516-3 doi: 10.1038/s41598-025-12516-3
    [32] L. K. Hotta, F. L. Neto, Information-theoretic model selection for time series decomposition, J. Time Ser. Anal., 33 (2012), 395–407.
    [33] R. Tan, Z. Wang, T. Wu, J. Wu, A data-driven model for water quality prediction in tai lake, china, using secondary modal decomposition with multidimensional external features, J. Hydrol.-Reg. Stud., 47 (2023), 101435. https://doi.org/10.1016/j.ejrh.2023.101435 doi: 10.1016/j.ejrh.2023.101435
    [34] R. Tan, Y. Hu, Z. Wang, A multi-source data-driven model of lake water level based on variational modal decomposition and external factors with optimized bi-directional long-short-term memory neural network, Environ. Modell. Softw., 167 (2023), 105766. https://doi.org/10.1016/j.envsoft.2023.105766 doi: 10.1016/j.envsoft.2023.105766
    [35] S. Hochreiter, J. Schmidhuber, Advances in long short-term memory networks, Neural Comput. Res., 10 (1997), 210–228.
    [36] Y. Liu, B. Chen, Y. Zheng, L. Cheng, G. Li, L. Lin, Odmixer: Fine-grained spatial-temporal mlp for metro origin-destination prediction, IEEE T. Knowl. Data En., 37 (2025), 5508–5522. https://doi.org/10.1109/TKDE.2025.3579370 doi: 10.1109/TKDE.2025.3579370
    [37] I. Gurevych, N. Reimers, Hybrid forecasting methods in financial analysis, Adv. Comput. Financ., 22 (2017), 85–102.
    [38] J. Zhang, H. Sui, X. Sun, C. Ge, L. Zhou, W. Susilo, Grabphisher: Phishing scams detection in ethereum via temporally evolving gnns, IEEE T. Serv. Comput., 17 (2024), 3727–3741. https://doi.org/10.1109/JSTARS.2024.3355290 doi: 10.1109/JSTARS.2024.3355290
    [39] G. Sun, C. Jiang, Computational methods for time series forecasting, Wiley Comput. Financ., 13 (2020), 175–198. https://doi.org/10.1007/978-1-4842-6053-1_7 doi: 10.1007/978-1-4842-6053-1_7
    [40] H. Iftikhar, J. E. Turpo-Chaparro, P. C. Rodrigues, J. L. López-Gonzales, Forecasting day-ahead electricity prices for the italian electricity market using a new decomposition-combination technique, Energies, 16 (2023), 6669. https://doi.org/10.3390/en16186669 doi: 10.3390/en16186669
    [41] H. Iftikhar, S. M. Gonzales, J. Zywiołek, J. L. López-Gonzales, Electricity demand forecasting using a novel time series ensemble technique, IEEE Access, 2024. https://doi.org/10.1109/ACCESS.2024.3419551
    [42] H. Iftikhar, A. Zafar, J. E. Turpo-Chaparro, P. C. Rodrigues, J. L. López-Gonzales, Forecasting day-ahead brent crude oil prices using hybrid combinations of time series models, Mathematics, 11 (2023), 3548. https://doi.org/10.3390/math11163548 doi: 10.3390/math11163548
    [43] H. Iftikhar, F. Khan, P. C. Rodrigues, A. A. Alharbi, J. Allohibi, Forecasting of inflation based on univariate and multivariate time series models: An empirical application, Mathematics, 13 (2025), 1121. https://doi.org/10.3390/math13071121 doi: 10.3390/math13071121
    [44] F. X. Diebold, R. S. Mariano, Comparing predictive accuracy, J. Bus. Econ. Stat., 13 (1995), 253–263. https://doi.org/10.1007/BF02771765 doi: 10.1007/BF02771765
    [45] H. Iftikhar, M. Qureshi, P. C. Rodrigues, M. U. Iftikhar, J. L. López-Gonzales, H. Iftikhar, Daily crude oil prices forecasting using a novel hybrid time series technique, IEEE Access, 13 (2025), 98822–98836. https://doi.org/10.1109/ACCESS.2025.3574788 doi: 10.1109/ACCESS.2025.3574788
    [46] S. M. Gonzales, H. Iftikhar, J. L. López-Gonzales, Analysis and forecasting of electricity prices using an improved time series ensemble approach: An application to the peruvian electricity market, AIMS Math., 9 (2024), 21952–21971. https://doi.org/10.3934/math.20241067 doi: 10.3934/math.20241067
    [47] H. Iftikhar, F. Khan, E. A. T. Armas, P. C. Rodrigues, J. L. López-Gonzales, A novel hybrid framework for forecasting stock indices based on the nonlinear time series models, Comput. Stat., 2025, 1–24.
    [48] M. Aamir, A. Shabri, Time series stationarity and forecasting in financial markets, J. Appl. Econ., 44 (2016), 113–132.
    [49] G. M. Box, G. M. Jenkins, Time series forecasting and model selection, Economet. Anal. Rev., 30 (2015), 215–234. https://doi.org/10.1590/S0102-46982014000100009 doi: 10.1590/S0102-46982014000100009
    [50] Y. Zheng, Stochastic gradient descent and adam optimization in deep learning, Mac. Learn. Adv., 42 (2018), 305–317.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1048) PDF downloads(63) Cited by(4)

Article outline

Figures and Tables

Figures(12)  /  Tables(7)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog