Research article Special Issues

Reliability assessment through group acceptance sampling under the Darna distribution

  • Received: 19 July 2025 Revised: 07 August 2025 Accepted: 11 August 2025 Published: 21 August 2025
  • MSC : 62D05, 62N05, 62P30

  • In this study, a group acceptance sampling plan was proposed when the lifetime of an item follows the Darna distribution (DD). The mean served as a quality parameter to determine the design parameters, including the acceptance number and minimum group size, under a specified test termination time and consumer risk. The operating characteristic values were presented graphically and in tabular form. The minimum group size and operating characteristic values were obtained for various values of the distribution parameters, and the results were illustrated with an example. To illustrate the applicability of the proposed plan, two real-life data sets of failure times in minutes and weeks were analyzed as practical examples. It is preferable to choose higher $ t/\mu_0 $ ($ \mu_0 $ is a given mean value) values to minimize the required number of groups and, hence, reduce the overall cost and inspection effort. In addition, choosing suitable values of $ r $ ($ r $ is the size of the group) and $ t/\mu_0 $ ensures a balance between the inspection effort and the risk of the producer.

    Citation: Amer Ibrahim Al-Omari, Ehab M. Almetwally, Harsh Tripathi, Ahmad A. Hanandeh. Reliability assessment through group acceptance sampling under the Darna distribution[J]. AIMS Mathematics, 2025, 10(8): 19033-19057. doi: 10.3934/math.2025851

    Related Papers:

  • In this study, a group acceptance sampling plan was proposed when the lifetime of an item follows the Darna distribution (DD). The mean served as a quality parameter to determine the design parameters, including the acceptance number and minimum group size, under a specified test termination time and consumer risk. The operating characteristic values were presented graphically and in tabular form. The minimum group size and operating characteristic values were obtained for various values of the distribution parameters, and the results were illustrated with an example. To illustrate the applicability of the proposed plan, two real-life data sets of failure times in minutes and weeks were analyzed as practical examples. It is preferable to choose higher $ t/\mu_0 $ ($ \mu_0 $ is a given mean value) values to minimize the required number of groups and, hence, reduce the overall cost and inspection effort. In addition, choosing suitable values of $ r $ ($ r $ is the size of the group) and $ t/\mu_0 $ ensures a balance between the inspection effort and the risk of the producer.



    加载中


    [1] S. S. Gupta, S. S. Gupta, Gamma distribution in acceptance sampling based on life tests, J. Am. Stat. Assoc., 56 (1961), 942–970. https://doi.org/10.1080/01621459.1961.10482137 doi: 10.1080/01621459.1961.10482137
    [2] S. S. Gupta, Life test sampling plans for normal and lognormal distributions, Technometrics, 4 (1962), 151–175. https://doi.org/10.1080/00401706.1962.10490002 doi: 10.1080/00401706.1962.10490002
    [3] M. Aslam, C. H. Jun, A group acceptance sampling plan for truncated life test having Weibull distribution, J. Appl. Stat., 36 (2009), 1021–1027. https://doi.org/10.1080/02664760802566788 doi: 10.1080/02664760802566788
    [4] M. Aslam, D. Kundu, M. Ahmad, Time truncated acceptance sampling plans for generalized exponential distribution, J. Appl. Stat., 37 (2010), 555–566. https://doi.org/10.1080/02664760902769787 doi: 10.1080/02664760902769787
    [5] M. Aslam, C. H. Jun, M. Ahmad, New acceptance sampling plans based on life tests for Birnbaum-Saunders distributions, J. Stat. Comput. Simul., 81 (2011), 461–470. https://doi.org/10.1080/00949650903418883 doi: 10.1080/00949650903418883
    [6] G. S. Rao, Double acceptance sampling plans based on truncated life tests for the Marshall-Olkin extended exponential distribution, Aust. J. Stat., 40 (2016), 169–176. https://doi.org/10.17713/ajs.v40i3.208 doi: 10.17713/ajs.v40i3.208
    [7] A. Ramaswamy, P. Anburajan, Group acceptance sampling plans using weighted binomial on truncated life tests for inverse Rayleigh and log – logistic distributions, IOSR J. Math., 2 (2012), 33–38. https://doi.org/10.9790/5728-0233338 doi: 10.9790/5728-0233338
    [8] G. Sathya Narayanan, V. Rajarathinam, A procedure for the selection of single sampling plans by variables based on Pareto distribution, J. Qual. Reliab. Eng., 2013 (2013), 808741. https://doi.org/10.1155/2013/808741 doi: 10.1155/2013/808741
    [9] W. Gui, X. Lu, Double acceptance sampling plan based on the Burr type X distribution under truncated life tests, Int. J. Ind. Syst. Eng., 28 (2018), 319–330. https://doi.org/10.1504/IJISE.2018.089742 doi: 10.1504/IJISE.2018.089742
    [10] B. Maleki Vishkaei, S. T. A. Niaki, M. Farhangi, I. Mahdavi, A single-retailer multi-supplier multi-product inventory model with destructive testing acceptance sampling and inflation, J. Ind. Prod. Eng., 36 (2019), 351–361. https://doi.org/10.1080/21681015.2018.1479893 doi: 10.1080/21681015.2018.1479893
    [11] H. Tripathi, M. Saha, V. Alha, An application of time truncated single acceptance sampling inspection plan based on generalized half-normal distribution, Ann. Data Sci., 9 (2022), 1243–1255. https://doi.org/10.1007/s40745-020-00267-z doi: 10.1007/s40745-020-00267-z
    [12] A. D. Al-Nasser, M. A. ul Haq, Acceptance sampling plans from a truncated life test based on the power Lomax distribution with application to manufacturing, Stat. Trans. New Ser., 22 (2021), 1–13. https://doi.org/10.21307/stattrans-2021-024 doi: 10.21307/stattrans-2021-024
    [13] N. Singh, G. Singh, A. Kanwar, N. Singh, Repetitive acceptance sampling plan for lifetimes following a skew-generalized inverse Weibull distribution, Pesqui. Oper., 42 (2022), 1–13. https://doi.org/10.1590/0101-7438.2022.042.00249077 doi: 10.1590/0101-7438.2022.042.00249077
    [14] A. Algarni, Group acceptance sampling plan based on new compounded three-parameter Weibull model, Axioms, 11 (2022), 438. https://doi.org/10.3390/axioms11090438 doi: 10.3390/axioms11090438
    [15] A. Al-Nasser, B. Y. Alhroub, Acceptance sampling plans using hyper-geometric theory for finite population under Q-Weibull distribution, Electron. J. Appl. Stat. Anal., 15 (2022), 352–366. https://doi.org/10.1285/i20705948v15n2p352 doi: 10.1285/i20705948v15n2p352
    [16] M. Imran, L. A. Al-Essa, M. H. Tahir, C. Chesneau, S. Shakoor, F. Jamal, An extended exponential model: Estimation using ranked set sampling with applications, J. Radiat. Res. Appl. Sci., 16 (2023), 100642. https://doi.org/10.1016/j.jrras.2023.100642 doi: 10.1016/j.jrras.2023.100642
    [17] A. H. AL-Marshadi, M. Aslam, A. Alharbey, Design of double acceptance sampling plan for Weibull distribution under indeterminacy, AIMS Mathematics, 8 (2023), 13294–13305. https://doi.org/10.3934/math.2023672 doi: 10.3934/math.2023672
    [18] N. Hussain, M. H. Tahir, F. Jamal, M. Ameeq, S. Shafiq, J. T. Mendy, An acceptance sampling plan for the odd exponential-logarithmic Fréchet distribution: Applications to quality control data, Cogent Eng., 11 (2024), 2304497. https://doi.org/10.1080/23311916.2024.2304497 doi: 10.1080/23311916.2024.2304497
    [19] M. Abiad, M. M. Rahman, O. S. Balogun, Y. A. Tashkandy, M. E. Bakr, M. Yusuf, et al., Sequential inspection sampling plan based on Burr-Ⅻ amputated life testing with numerical illustrations and industrial applications, AIMS Mathematics, 10 (2025), 14917–14942. https://doi.org/10.3934/math.2025669 doi: 10.3934/math.2025669
    [20] P. V. Kumarasamy, T. Ramesh, A. T. Thottathil, Acceptance-rejection criteria based on Birnbaum-Saunders lifetime distribution using intervened Poisson distribution, Qual. Reliab. Eng. Int., 41 (2025), 1183–1194. https://doi.org/10.1002/qre.3719 doi: 10.1002/qre.3719
    [21] T. R. Tsai, S. J. Wu, Acceptance sampling based on truncated life tests for generalized Rayleigh distribution, J. Appl. Stat., 33 (2006), 595–600. https://doi.org/10.1080/02664760600679700 doi: 10.1080/02664760600679700
    [22] A. M. Almarashi, K. Khan, C. Chesneau, F. Jamal, Group acceptance sampling plan using Marshall-Olkin Kumaraswamy exponential (MOKw-E) distribution, Processes, 9 (2021), 1066. https://doi.org/10.3390/pr9061066 doi: 10.3390/pr9061066
    [23] M. Kim, B. J. Yum, Reliability acceptance sampling plans for the Weibull distribution under accelerated Type-Ⅰ censoring, J. Appl. Stat., 36 (2009), 11–20. https://doi.org/10.1080/02664760802382483 doi: 10.1080/02664760802382483
    [24] M. Aslam, A. R. Mughal, M. Ahmad, Z. Yab, Group acceptance sampling plans for Pareto distribution of the second kind, J. Test. Eval., 38 (2010), 143–150. https://doi.org/10.1520/JTE102426 doi: 10.1520/JTE102426
    [25] D. H. Shraa, A. I. Al-Omari, Darna distribution: Properties and application, Electron. J. Appl. Stat. Anal., 12 (2019), 520–541. https://doi.org/10.1285/I20705948V12N2P520 doi: 10.1285/I20705948V12N2P520
    [26] H. Tripathi, A. I. Al-Omari, M. Saha, A. Al-Anzi, Improved attribute chain sampling plan for Darna distribution, Comput. Syst. Sci. Eng., 38 (2021), 382–392. https://doi.org/10.32604/csse.2021.015624 doi: 10.32604/csse.2021.015624
    [27] A. I. Al-Omari, K. Aidi, R. AlSultan, Power Darna distribution with right censoring: Estimation, testing and applications, Appl. Sci., 12 (2022), 8272. https://doi.org/10.3390/app12168272 doi: 10.3390/app12168272
    [28] D. V. Saraja, C. Subramanian, A. A. Rather, N. S. Rao, Some contributions to Darna distribution with properties and applications in medical science, Dickensian J., 22, (2022), 2057–2072.
    [29] J. F. Lawless, Statistical models and methods for lifetime data, New York: Wiley, 2002. https://doi.org/10.1002/9781118033005
    [30] K. K. Jose, A. Paul, Marshall-Olkin exponential power distribution and its generalization: Theory and applications, IAPQR Trans., 43 (2018), 1–29. https://doi.org/10.32381/IAPQRT.2018.43.01.1 doi: 10.32381/IAPQRT.2018.43.01.1
    [31] M. V. Aarset, How to identify a bathtub hazard rate, IEEE Trans. Reliab., 36 (1987), 106–108. https://doi.org/10.1109/TR.1987.5222310 doi: 10.1109/TR.1987.5222310
    [32] H. Zakerzadeh, A. Dolati, Generalized Lindley distribution, J. Math. Ext., 3 (2009), 1–17.
    [33] M. A. Thaimer, A. I. Al-Omari, Weighted gamma Lindley distribution: Statistical properties, reliability analysis, with modeling of COVID-19 data, J. Appl. Prob. Stat., 20 (2025), 1–32.
    [34] A. J. Alidamat, A. I. Al-Omari, The extended length biased two parameters Mirra distribution with an application to engineering data, Adv. Math. Model. Appl., 6 (2021), 113–127.
    [35] A. I. Al-Omari, K. Alhyasat, K. Ibrahim, M. Abu Bakar, Power length-biased Suja distribution: Properties and application, Electron. J. Appl. Stat. Anal., 12 (2019), 429–452. https://doi.org/10.1285/i20705948v12n2p429 doi: 10.1285/i20705948v12n2p429
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(533) PDF downloads(39) Cited by(0)

Article outline

Figures and Tables

Figures(7)  /  Tables(10)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog