Research article

Fuzzy topology with $ \mathcal{I} $-convergence

  • Received: 26 June 2025 Revised: 05 August 2025 Accepted: 08 August 2025 Published: 21 August 2025
  • MSC : 03E72, 26E50, 54A40, 46S40, 34K36

  • In this paper, a new approach to specifying the closure of subsets in $ J^{E} $ is proposed, based on the concept of $ \mathcal{I} $-convergence of sequences. The notion of fuzzy $ \mathcal{I} $-closure is defined using this convergence, and from it, the fuzzy $ \mathcal{I} $-topology is introduced. Moreover, the concepts of continuity and $ \mathcal{I} $-continuity in fuzzy topological spaces are examined. A comparison between the proposed $ \mathcal{I} $-topology and the classical fuzzy topology is presented, highlighting certain fundamental properties and structural differences. This work contributes to the generalization of fuzzy topological structures by extending the role of sequence convergence through the use of $ \mathcal{I} $-convergence. Furthermore, a practical example illustrating temperature control in an industrial furnace is provided through the application of $ \mathcal{I} $-convergence of fuzzy sequences.

    Citation: Abdelhak Razouki, Omar El Ogri, Jaouad EL-Mekkaoui, Zamir Ahmad Ansari, Naglaa F. Soliman, Abeer D. Algarni. Fuzzy topology with $ \mathcal{I} $-convergence[J]. AIMS Mathematics, 2025, 10(8): 19058-19078. doi: 10.3934/math.2025852

    Related Papers:

  • In this paper, a new approach to specifying the closure of subsets in $ J^{E} $ is proposed, based on the concept of $ \mathcal{I} $-convergence of sequences. The notion of fuzzy $ \mathcal{I} $-closure is defined using this convergence, and from it, the fuzzy $ \mathcal{I} $-topology is introduced. Moreover, the concepts of continuity and $ \mathcal{I} $-continuity in fuzzy topological spaces are examined. A comparison between the proposed $ \mathcal{I} $-topology and the classical fuzzy topology is presented, highlighting certain fundamental properties and structural differences. This work contributes to the generalization of fuzzy topological structures by extending the role of sequence convergence through the use of $ \mathcal{I} $-convergence. Furthermore, a practical example illustrating temperature control in an industrial furnace is provided through the application of $ \mathcal{I} $-convergence of fuzzy sequences.



    加载中


    [1] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [2] D. Dubois, W. Ostasiewicz, H. Prade, Fuzzy sets: History and basic notions, In: Fundamentals of fuzzy sets, MA, Boston: Springer, 7 (2000), 21–124.
    [3] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182–190. https://doi.org/10.1016/0022-247X(68)90057-7
    [4] R Lowen, Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl., 56 (1976), 621–633. https://doi.org/10.1016/0022-247X(76)90029-9 doi: 10.1016/0022-247X(76)90029-9
    [5] B. Hutton, I. Reilly, Separation axioms in fuzzy topological spaces, Fuzzy Set. Syst., 3 (1980), 93–104. https://doi.org/10.1016/0165-0114(80)90007-X doi: 10.1016/0165-0114(80)90007-X
    [6] D. Dubois, H. Prade, Fuzzy sets and systems: Theory and applications, New York: Academic Press, 1980.
    [7] G. J. Klir, B. Yuan, Fuzzy sets and fuzzy logic: Theory and applications, Prentice Hall PTR, 1995.
    [8] L. D. R. Kočinac, M. H. M. Rashid, On ideal convergence of double sequences in the topology induced by a fuzzy 2-norm, TWMS J. Pure Appl. Math., 8 (2017), 97–111.
    [9] M. H. M. Rashid, L. D. R. Kočinac, Ideal convergence in 2-fuzzy 2-normed spaces, Hacet. J. Math. Stat., 46 (2017), 149–162. https://doi.org/10.15672/HJMS.2016.406 doi: 10.15672/HJMS.2016.406
    [10] K. K. Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl., 82 (1981), 14–32. https://doi.org/10.1016/0022-247X(81)90222-5 doi: 10.1016/0022-247X(81)90222-5
    [11] S, Saha, Fuzzy $\delta$-continuous mappings, J. Math. Anal. Appl., 126 (1987), 130–142. https://doi.org/10.1016/0022-247X(87)90081-3 doi: 10.1016/0022-247X(87)90081-3
    [12] R. H. Warren, Continuity of mapping of fuzzy topological spaces, Am. Math. Soc., 21 (1974).
    [13] S. J. Lee, Y. S. Eoum, Intuitionistic fuzzy $\theta$-closure and $\theta$-interior, Commun. Korean Math. S., 25 (2010), 273–282. https://doi.org/10.4134/CKMS.2010.25.2.273 doi: 10.4134/CKMS.2010.25.2.273
    [14] Y. S. Eom, S. J. Lee, Delta closure and delta interior in intuitionistic fuzzy topological spaces, Int. J. Fuzzy Log. Inte., 12 (2012), 290–295. https://doi.org/10.5391/IJFIS.2012.12.4.290 doi: 10.5391/IJFIS.2012.12.4.290
    [15] K. Dutta, S. Ganguly, On strongly $\delta$-continuous functions, Carpathian J. Math., 19 (2003), 51–66.
    [16] S. Ganguly, K. Dutta, $\delta$-continuous functions and topologies on function spaces, Soochow J. Math., 30 (2004), 419–430.
    [17] B. C. Tripathy, G. C. Ray, Weakly continuous functions on mixed fuzzy topological spaces, Acta Sci.-Technol., 36 (2014), 331–335. https://doi.org/10.4025/actascitechnol.v36i2.16241 doi: 10.4025/actascitechnol.v36i2.16241
    [18] B. C. Tripathy, G. C. Ray, Fuzzy $ \delta $-$ \text{I} $-continuity in mixed fuzzy ideal topological spaces, J. Appl. Anal., 24 (2018), 233–239. https://doi.org/10.1515/jaa-2018-0022 doi: 10.1515/jaa-2018-0022
    [19] R. Lowen, Convergence in fuzzy topological spaces, General Topology Appl., 10 (1979), 147–160. https://doi.org/10.1016/0016-660X(79)90004-7 doi: 10.1016/0016-660X(79)90004-7
    [20] C. M. Hu, Theory of convergence in fuzzy topological spaces, J. Fuzzy Math., 1 (1993), 1–12.
    [21] R. Lowen, The relation between filter and net convergence in fuzzy topological spaces, Fuzzy Math., 3 (1983), 41–52.
    [22] B. Y. Lee, J. H. Park, B. H. Park, Fuzzy convergence structures, Fuzzy Set. Syst., 56 (1993), 309–315. https://doi.org/10.1016/0165-0114(93)90211-Y
    [23] B. C. Tripathy, S. Borgohain, The sequence space $m(\phi, \delta_{m}, p)^{F}$, Fasciculi Math., 39 (2008), 87–96.
    [24] B. C. Tripathy, S. Borgohain, Some classes of difference sequence spaces of fuzzy real numbers defined by orlicz function, Adv. Fuzzy Syst., 2011. https://doi.org/10.1155/2011/216414
    [25] A. E. Amrani, A. Razouki, R. A Hassani, M. Babahmed, On the $ \mathbb{K} $-vector sequential topology on a non-archimedean valued field, P-Adic Numbers Ultra., 12 (2020), 177–184. https://doi.org/10.1134/S2070046620030012 doi: 10.1134/S2070046620030012
    [26] P. Kostyrko, W. Wilczyński, T. Šalát, $ \mathcal{I} $-convergence, Real Anal. Exch., 26 (2000), 669–686.
    [27] T. Šalát, B. C. Tripathy, M. Ziman, On some properties of $ \mathcal{I} $-convergence, Tatra Mt. Math. Publ., 28 (2004), 274–286.
    [28] T. Šalát, B. C. Tripathy, M. Ziman, On $ \mathcal{I} $-convergence field, Ital. J. Pure Appl. Math, 17 (2005), 1–8.
    [29] P. Das, P. Kostyrko, W. Wilczyński, P. Malik, $ \mathcal{I} $ and $ \mathcal{I}^{*} $-convergence of double sequences, Math. Slovaca, 58 (2008), 605–620. https://doi.org/10.2478/s12175-008-0096-x doi: 10.2478/s12175-008-0096-x
    [30] M. M. Stadler, M. A. D. P. Vicente, On n-convergence of fuzzy nets, Fuzzy Set. Syst., 51 (1992), 203–217. https://doi.org/10.1016/0165-0114(92)90193-8 doi: 10.1016/0165-0114(92)90193-8
    [31] M. Sarkar, On fuzzy topological spaces, J. Math. Anal. Appl., 79 (1981), 384–394. https://doi.org/10.1016/0022-247X(81)90033-0
    [32] R. Srivastava, S. N. Lal, A. K. Srivastava, Fuzzy hausdorff topological spaces, J. Math. Anal. Appl., 81 (1981), 497–506. https://doi.org/10.1016/0022-247X(81)90078-0 doi: 10.1016/0022-247X(81)90078-0
    [33] R. Lowen, Fuzzy set theory: Basic concepts, techniques and bibliography, Dordrecht: Kluwer Academic Publishers, 1996. https://doi.org/10.1007/978-94-015-8741-9
    [34] M. Saralegui, M. A. D. P. Vicente, Una nota sobre convergencia en espacios topologicos fuzzy, In: Actas de las IX Jornadas hispano-lusas de matemáticas: Salamanca, 1982,763–766.
    [35] S. V. Krishna, K. K. M. Sarma, Separation of fuzzy normed linear spaces, Fuzzy Set. Syst., 63 (1994), 207–217. https://doi.org/10.1016/0165-0114(94)90351-4 doi: 10.1016/0165-0114(94)90351-4
    [36] N. R. Das, P. Das, Fuzzy topology generated by fuzzy norm, Fuzzy Set. Syst., 107 (1999), 349–354. https://doi.org/10.1016/S0165-0114(97)00302-3 doi: 10.1016/S0165-0114(97)00302-3
    [37] A. Freedman, J. Sember, Densities and summability, Pac. J. Math., 95 (1981), 293–305. https://doi.org/10.2140/pjm.1981.95.293
    [38] G. D. Maio, L. D. R Kočinac, Statistical convergence in topology, Topol. Appl., 156 (2008), 28–45. https://doi.org/10.1016/j.topol.2008.01.015 doi: 10.1016/j.topol.2008.01.015
    [39] X. G. Zhou, L. Liu, S. Lin, On topological spaces defined by $ \mathcal{I} $-convergence, B. Iran. Math. Soc., 46 (2020), 675–692. https://doi.org/10.1007/s41980-019-00284-6 doi: 10.1007/s41980-019-00284-6
    [40] P. Kostyrko, T. Šalát, W. Wilczyński, $\mathcal{I}$-convergence, Real Anal. Exch., 26 (2001), 669–686.
    [41] P. Mikusiński, Axiomatic theory of convergence, Uniw. Śląski W Katowicach Prace Nauk.-Prace Mat., 12 (1982), 13–21.
    [42] M. T. Cui, M. Pan, J. Wang, P. J. Li, A parameterized level set method for structural topology optimization based on reaction diffusion equation and fuzzy pid control algorithm, Electron. Res. Arch., 30 (2022), 2568–2599. http://dx.doi.org/10.3934/era.2022132 doi: 10.3934/era.2022132
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(564) PDF downloads(57) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog