Research article

On a parameterized inversion-free iterative algorithm for solving the nonlinear matrix equation $ X+\sum_{i = 1}^{m}A_{i}^{\ast}X^{-p_{i}}A_{i} = I $

  • Received: 25 June 2025 Revised: 07 August 2025 Accepted: 18 August 2025 Published: 21 August 2025
  • MSC : 15A24, 47H10, 65H05

  • In this paper, we propose a parameterized inversion-free iterative algorithm to compute the positive definite solution of the nonlinear matrix equation $ X+\sum_{i = 1}^{m}A_{i}^{\ast}X^{-p_{i}}A_{i} = I $. Then, we prove that the proposed algorithm converges. Finally, in comparison with three well-known existing algorithms, the accuracy and effectiveness of the proposed algorithm are demonstrated by some numerical examples.

    Citation: Changzhou Li, Boyu Wang, Chao Yuan, Shiliang Chen. On a parameterized inversion-free iterative algorithm for solving the nonlinear matrix equation $ X+\sum_{i = 1}^{m}A_{i}^{\ast}X^{-p_{i}}A_{i} = I $[J]. AIMS Mathematics, 2025, 10(8): 19018-19032. doi: 10.3934/math.2025850

    Related Papers:

  • In this paper, we propose a parameterized inversion-free iterative algorithm to compute the positive definite solution of the nonlinear matrix equation $ X+\sum_{i = 1}^{m}A_{i}^{\ast}X^{-p_{i}}A_{i} = I $. Then, we prove that the proposed algorithm converges. Finally, in comparison with three well-known existing algorithms, the accuracy and effectiveness of the proposed algorithm are demonstrated by some numerical examples.



    加载中


    [1] W. N. Anderson, T. D. Morley, G. E. Trapp, Ladder networks, fixpoints, and the geometric mean, Circ. Syst. Signal. Pr., 2 (1983), 259–268. http://doi.org/10.1007/BF01599069 doi: 10.1007/BF01599069
    [2] W. Pusz, S. L. Woronowicz, Functional calculus for sesquilinear forms and the purification map, Rep. Math. Phys., 8 (1975), 159–170. http://doi.org/10.1016/0034-4877(75)90061-0 doi: 10.1016/0034-4877(75)90061-0
    [3] W. L. Green, E. W. Kamen, Stabilizability of linear systems over a commutative normed algebra with applications to spatially-distributed and parameter-dependent systems, SIAM J. Control. Optim., 23 (1985), 1–18. http://doi.org/10.1137/0323001 doi: 10.1137/0323001
    [4] W. N. Anderson, G. B. Kleindorfer, P. R. Kleindorfer, M. B. Woodroofe, Consistent estimates of the parameters of a linear system, Ann. Math. Stat., 40 (1969), 2064–2075. http://doi.org/10.1214/aoms/1177697286 doi: 10.1214/aoms/1177697286
    [5] C. Guo, Y. Kuo, W. Lin, On a nonliner matrix equation arising in nano research, SIAM J. Matrix Anal. A., 33 (2012), 235–262. http://doi.org/10.1137/100814706 doi: 10.1137/100814706
    [6] J. Yong, Z. Zhou, Stochastic controls: Hamiltonian systems and HJB equations, Springer-Verlag, 1999.
    [7] J. C. Engwerda, A. C. M. Ran, A. L. Rijkeboer, Necessary and sufficient conditions for the existence of a positive definite solution of the matrix equation ${X+A^{\ast}X^{-1}A = Q}$, Linear Algebra Appl., 71 (1993), 255–275. http://doi.org/10.1016/0024-3795(93)90295-Y doi: 10.1016/0024-3795(93)90295-Y
    [8] C. Guo, P. Lancaster, Iterative solution of two matrix equations, Math. Comput., 68 (1999), 1589–1603. http://doi.org/10.1090/S0025-5718-99-01122-9 doi: 10.1090/S0025-5718-99-01122-9
    [9] X. Zhan, Computing the extremal positive definite solutions of a matrix equation, SIAM J. Sci. Comput., 17 (1996), 1167–1174. http://doi.org/10.1137/S1064827594277041 doi: 10.1137/S1064827594277041
    [10] S. M. E. Sayed, A. M. A. Dbiban, A new inversion free iteration for solving the equation ${X+A^{\star}X^{-1}A = Q}$, J. Comput. Appl. Math., 181 (2005), 148–156. http://doi.org/10.1016/j.cam.2004.11.025 doi: 10.1016/j.cam.2004.11.025
    [11] M. Monsalve, M. Raydan, A new inversion-free method for a rational matrix equation, Linear Algebra Appl., 433 (2010), 64–71. http://doi.org/10.1016/j.laa.2010.02.006 doi: 10.1016/j.laa.2010.02.006
    [12] H. Zhang, F. Ding, Iterative algorithms for ${X+A^{T}X^{-1}A = I}$ by using the hierarchical identification principle, J. Franklin I., 353 (2016), 1132–1146. http://doi.org/10.1016/j.jfranklin.2015.04.003 doi: 10.1016/j.jfranklin.2015.04.003
    [13] Z. Peng, S. M. E. Sayed, X. Zhang, Iterative methods for the extremal positive definite solution of the matrix equation ${X+A^{*}X^{-\alpha}A = Q}$, J. Comput. Appl. Math., 200 (2007), 520–527. http://doi.org/10.1016/j.cam.2006.01.033 doi: 10.1016/j.cam.2006.01.033
    [14] L. Zhang, An improved inversion-free method for solving the matrix equation ${X+A^{*}X^{-\alpha}A = Q}$, J. Comput. Appl. Math., 253 (2013), 200–203. http://doi.org/10.1016/j.cam.2013.04.007 doi: 10.1016/j.cam.2013.04.007
    [15] J. Long, X. Hu, L. Zhang, On the Hermitian positive definite solution of the nonlinear matrix equation ${X+A^{*}X^{-1}A+B^{*}X^{-1}B = I}$, B. Braz. Math. Soc., 39 (2008), 371–386. http://doi.org/10.1007/s00574-008-0011-7 doi: 10.1007/s00574-008-0011-7
    [16] V. I. Hasanov, A. A. Ali, On convergence of three iterative methods for solving of the matrix equation ${X+A^{*}X^{-1}A+B^{*}X^{-1}B = Q}$, Comput. Appl. Math., 36 (2017), 79–87. http://doi.org/10.1007/s40314-015-0215-6 doi: 10.1007/s40314-015-0215-6
    [17] K. Sayevand, R. Erfanifar, H. Esmaeili, The maximal positive definite solution of the nonlinear matrix eqaution ${X+A^{*}X^{-1}A+B^{*}X^{-1}B = I}$, Math. Sci., 17 (2023), 337–350. http://doi.org/10.1007/s40096-022-00454-4 doi: 10.1007/s40096-022-00454-4
    [18] X. Yin, R. Wen, L. Fang, On the nonlinear matrix equation ${X+\sum_{i = 1}^{m}A_{i}^{*}X^{-q}A_{i} = Q (0 < q \leq 1)}$, B. Korean Math. Soc., 51 (2014), 739–763. http://doi.org/10.4134/BKMS.2014.51.3.739 doi: 10.4134/BKMS.2014.51.3.739
    [19] B. Huang, C. Ma, Some iterative methods for the largest positive definite solution to a class of nonlinear matrix equation, Numer. Algorithms, 79 (2018), 153–178. http://doi.org/10.1007/s11075-017-0432-8 doi: 10.1007/s11075-017-0432-8
    [20] A. Liu, G. Chen, On the Hermitian positive definite solutions of nonlinear matrix equation ${X^{s}+\sum_{i = 1}^{m}A_{i}^{*}X^{-t_{i}}A_{i} = Q}$, Appl. Math. Comput., 243 (2014), 950–959. http://doi.org/10.1016/j.amc.2014.05.090 doi: 10.1016/j.amc.2014.05.090
    [21] J. Li, Y. Zhang, Solvability for a nonlinear matrix equation, B. Iran Math. Soc., 44 (2018), 1171–1184. http://doi.org/10.1007/s41980-018-0080-3 doi: 10.1007/s41980-018-0080-3
    [22] Y. He, J. Long, On the Hermitian positive definite solution of the nonlinear matrix equation ${X+\sum_{i = 1}^{m}A_{i}^{\ast}X^{-1}A_{i} = I}$, Appl. Math. Comput., 216 (2010), 3480–3485. http://doi.org/10.1016/j.amc.2010.04.041 doi: 10.1016/j.amc.2010.04.041
    [23] V. I. Hasanov, S. A. Hakkaev, Convergence analysis of some iterative methods for a nonlinear matrix equation, Comput. Math. Appl., 72 (2016), 1164–1176. http://doi.org/10.1016/j.camwa.2016.06.035 doi: 10.1016/j.camwa.2016.06.035
    [24] R. Bhatia, Matrix analysis, graduate texts in mathematics, Springer-Verlag, 1997.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(372) PDF downloads(32) Cited by(0)

Article outline

Figures and Tables

Figures(3)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog