Research article Special Issues

A simplified approach to solve hesitant fuzzy linear programming problem with hesitant decision variables and right-hand-side values

  • Received: 15 April 2025 Revised: 12 August 2025 Accepted: 13 August 2025 Published: 18 August 2025
  • MSC : 03E72, 94D05, 90B50

  • An approach (a generalization of the classical simplex algorithm) is proposed to solve hesitant fuzzy linear programming problems (HFLPPs). In this paper, we pointed out that much computational effort is required to solve HFLPPs by the existing approach. Moreover, to reduce the computational efforts, an alternative approach is proposed to solve HFLPPs. Furthermore, some other advantages of the proposed alternative approach (PrAlApp) over the existing approach are discussed. Finally, an existing HFLPP is solved by the PrAlApp.

    Citation: Raina Ahuja, Meraj Ali Khan, Parul Tomar, Amit Kumar, S. S. Appadoo, Ibrahim Al-Dayel. A simplified approach to solve hesitant fuzzy linear programming problem with hesitant decision variables and right-hand-side values[J]. AIMS Mathematics, 2025, 10(8): 18716-18730. doi: 10.3934/math.2025836

    Related Papers:

  • An approach (a generalization of the classical simplex algorithm) is proposed to solve hesitant fuzzy linear programming problems (HFLPPs). In this paper, we pointed out that much computational effort is required to solve HFLPPs by the existing approach. Moreover, to reduce the computational efforts, an alternative approach is proposed to solve HFLPPs. Furthermore, some other advantages of the proposed alternative approach (PrAlApp) over the existing approach are discussed. Finally, an existing HFLPP is solved by the PrAlApp.



    加载中


    [1] V. Torra, Hesitant fuzzy sets, Int. J. Intell. Syst., 25 (2010), 529-539. https://doi.org/10.1002/int.20418 doi: 10.1002/int.20418
    [2] L. A. Zadeh, Fuzzy sets, Inf. Control., 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [3] M. Ranjbar, S. M. Miri, S. Effati, Hesitant fuzzy numbers with (α, k)-cuts in compact intervals and applications, Expert Syst. Appl., 151 (2020), 113363. https://doi.org/10.1016/j.eswa.2020.113363 doi: 10.1016/j.eswa.2020.113363
    [4] H. J. Zimmermann, Fuzzy set theory and its applications, Kluwer Academic Publisher, Dordrecht, 2001. https://doi.org/10.1007/978-94-010-0646-0
    [5] M. Ranjbar, S. Effati, S. M. Miri, Arithmetic operations and ranking of hesitant fuzzy numbers by extension principle, Iran. J. Fuzzy Syst., 19 (2022), 97–114. https://doi.org/10.1016/j.engappai.2022.105047 doi: 10.1016/j.engappai.2022.105047
    [6] M. Ranjbar, S. Effati, S. M. Miri, Fully hesitant fuzzy linear programming with hesitant fuzzy numbers, Eng. Appl. Artif. Intell., 114 (2022), 105047. https://doi.org/10.1016/j.engappai.2022.105047 doi: 10.1016/j.engappai.2022.105047
    [7] S. Saghi, A. Nazeni, S. Effati, M. Ranjbar, Simplex algorithm for hesitant fuzzy linear programming problem with hesitant cost coefficient, Iran. J. Fuzzy Syst., 20 (2023), 137–152.
    [8] R. Ahuja, A. Kumar, Mehar approach to solve hesitant fuzzy linear programming problems, J. Anal., 32 (2024), 335–371. https://doi.org/10.1007/s41478-023-00629-9 doi: 10.1007/s41478-023-00629-9
    [9] S. Saghi, A. Nazemi, S. Effati, M. Ranjbar, Simplex algorithm for hesitant fuzzy linear programming problem with hesitant decision variables and right-hand-side values, Int. J. Fuzzy Syst., 27 (2025), 481–491. https://doi.org/10.1007/s40815-024-01790-4 doi: 10.1007/s40815-024-01790-4
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(437) PDF downloads(28) Cited by(0)

Article outline

Figures and Tables

Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog