Research article Special Issues

A novel extension to the unit Weibull distribution: properties and inference with applications to medicine, engineering, and radiation

  • Received: 18 June 2025 Revised: 02 August 2025 Accepted: 05 August 2025 Published: 19 August 2025
  • MSC : 60E05, 62G05, 62N05

  • This study introduces a new extension of the unit Weibull distribution called the unit power generalized Weibull distribution (UPGWD). The UPGWD arises from inverse exponential function transformation of the power generalized Weibull distribution. It is a highly competitive distribution compared with the existing unit distributions in the literature, offering significant flexibility. The probability density function of the UPGWD can display several forms, including constant, bathtub, unimodal, J-shaped (increasing), and inverted J-shaped (decreasing) configurations. Conversely, its hazard function may exhibit increasing J-shaped and bathtub configurations. Some of its corresponding basic statistical and reliability properties are introduced. Furthermore, the maximum likelihood estimation (MLE) technique is applied to estimate its parameters. A Monte Carlo simulation study is performed to assess the accuracy of the MLE estimates. Finally, to demonstrate the potential importance of the UPGWD, four applications with actual lifetime data related to COVID-19, reliability, engineering, and radiation are discussed. The empirical application further validated its efficacy, surpassing the earlier existing unit Weibull distributions, including the unit Weibull, the unit inverted exponentiated Weibull, the upper truncated Weibull, the bounded exponentiated Weibull, the power upper truncated Weibull, and the Poisson unit Weibull distributions.

    Citation: Hassan Eid Elghaly, Mohamed A. Abd Elgawad, Boping Tian. A novel extension to the unit Weibull distribution: properties and inference with applications to medicine, engineering, and radiation[J]. AIMS Mathematics, 2025, 10(8): 18731-18769. doi: 10.3934/math.2025837

    Related Papers:

  • This study introduces a new extension of the unit Weibull distribution called the unit power generalized Weibull distribution (UPGWD). The UPGWD arises from inverse exponential function transformation of the power generalized Weibull distribution. It is a highly competitive distribution compared with the existing unit distributions in the literature, offering significant flexibility. The probability density function of the UPGWD can display several forms, including constant, bathtub, unimodal, J-shaped (increasing), and inverted J-shaped (decreasing) configurations. Conversely, its hazard function may exhibit increasing J-shaped and bathtub configurations. Some of its corresponding basic statistical and reliability properties are introduced. Furthermore, the maximum likelihood estimation (MLE) technique is applied to estimate its parameters. A Monte Carlo simulation study is performed to assess the accuracy of the MLE estimates. Finally, to demonstrate the potential importance of the UPGWD, four applications with actual lifetime data related to COVID-19, reliability, engineering, and radiation are discussed. The empirical application further validated its efficacy, surpassing the earlier existing unit Weibull distributions, including the unit Weibull, the unit inverted exponentiated Weibull, the upper truncated Weibull, the bounded exponentiated Weibull, the power upper truncated Weibull, and the Poisson unit Weibull distributions.



    加载中


    [1] M. Muhammad, B. Abba, J. Xiao, N. Alsadat, F. Jamal, M. Elgarhy, A new three-parameter flexible unit distribution and its quantile regression model, IEEE Access, 12 (2024), 156235–156251. https://doi.org/10.1109/ACCESS.2024.3485219 doi: 10.1109/ACCESS.2024.3485219
    [2] A. Fayomi, A. S. Hassan, H. Baaqeel, E. M. Almetwally, Bayesian inference and data analysis of the unit–power Burr X distribution, Axioms, 12 (2023), 297. https://doi.org/10.3390/axioms12030297 doi: 10.3390/axioms12030297
    [3] P. Kumaraswamy, A generalized probability density function for double-bounded random processes, J. Hydrol., 46 (1980), 79–88. https://doi.org/10.1016/0022-1694(80)90036-0 doi: 10.1016/0022-1694(80)90036-0
    [4] I. E. Okorie, E. Afuecheta, H. S. Bakouch, Unit upper truncated Weibull distribution with extension to 0 and 1 inflated model – theory and applications, Heliyon, 9 (2023), e22260. https://doi.org/10.1016/j.heliyon.2023.e22260 doi: 10.1016/j.heliyon.2023.e22260
    [5] S. Bashir, B. Masood, L. A. Al-Essa, A. Sanaullah, I. Saleem, Properties, quantile regression, and application of bounded exponentiated Weibull distribution to Covid-19 data of mortality and survival rates, Sci. Rep., 14 (2024), 14353. https://doi.org/10.1038/s41598-024-65057-6 doi: 10.1038/s41598-024-65057-6
    [6] P. L. Gupta, R. C. Gupta, The monotonicity of the reliability measures of the beta distribution, J. Appl. Math. Lett., 13 (2000), 5–9. https://doi.org/10.1016/S0893-9659(00)00025-2 doi: 10.1016/S0893-9659(00)00025-2
    [7] C. W. Topp, F. C. Leone, A family of J-shaped frequency functions, J. Am. Stat. Assoc., 50 (1955), 209–219. https://doi.org/10.2307/2281107 doi: 10.2307/2281107
    [8] J. Mazucheli, A. F. B. Menezes, M. E. Ghitany, The unit-Weibull distribution and associated inference, J. Appl. Probab. Stat., 13 (2018), 1–22.
    [9] A. A. Suleiman, H. Daud, A. I. Ishaq, M. Othman, H. M. Alshanbari, S. N. Alaziz, A novel extended Kumaraswamy distribution and its application to Covid-19 data, Eng. Rep., 6 (2024), e12967. https://doi.org/10.1002/eng2.12967 doi: 10.1002/eng2.12967
    [10] A. Grassia, On a family of distributions with argument between 0 and 1 obtained by transformation of the gamma and derived compound distributions, Aust. J. Stat., 19 (1977), 108–114. https://doi.org/10.1111/j.1467-842X.1977.tb01277.x doi: 10.1111/j.1467-842X.1977.tb01277.x
    [11] P. R. Tadikamalla, On a family of distributions obtained by the transformation of the gamma distribution, J. Stat. Comput. Simul., 13 (1981), 209–214. https://doi.org/10.1080/00949658108810497 doi: 10.1080/00949658108810497
    [12] E. Gómez-Déniz, M. A. Sordo, E. Calderín-Ojeda, The log–Lindley distribution as an alternative to the beta regression model with applications in insurance, Insur. Math. Econ., 54 (2014), 49–57. https://doi.org/10.1016/j.insmatheco.2013.10.017 doi: 10.1016/j.insmatheco.2013.10.017
    [13] J. Mazucheli, A. F. B. Menezes, S. Chakraborty, On the one parameter unit-Lindley distribution and its associated regression model for proportion data, J. Appl. Stat., 46 (2019), 700–714. https://doi.org/10.1080/02664763.2018.1511774 doi: 10.1080/02664763.2018.1511774
    [14] J. Mazucheli, A. F. B. Menezes, S. Dey, The unit-Birnbaum-Saunders distribution with applications, Chil. J. Stat., 9 (2018), 47–57.
    [15] J. Mazucheli, A. F. Menezes, S. Dey, Unit-Gompertz distribution with applications, Statistica, 79 (2019), 25–43. https://doi.org/10.6092/issn.1973-2201/8497 doi: 10.6092/issn.1973-2201/8497
    [16] M. E. Ghitany, J. Mazucheli, A. F. B. Menezes, F. Alqallaf, The unit-inverse Gaussian distribution: a new alternative to two-parameter distributions on the unit interval, Commun. Stat. -Theory Methods, 48 (2019), 3423–3438. https://doi.org/10.1080/03610926.2018.1476717 doi: 10.1080/03610926.2018.1476717
    [17] A. T. Ramadan, A. H. Tolba, B. S. El-Desouky, A unit half-logistic geometric distribution and its application in insurance, Axioms, 11 (2022), 676. https://doi.org/10.3390/axioms11120676 doi: 10.3390/axioms11120676
    [18] R. A. R. Bantan, C. Chesneau, F. Jamal, M. Elgarhy, M. H. Tahir, A. Ali, et al., Some new facts about the unit-Rayleigh distribution with applications, Mathematics, 8 (2020), 1954. https://doi.org/10.3390/math8111954 doi: 10.3390/math8111954
    [19] I. Shah, B. Iqbal, M. F. Akram, S. Ali, S. Dey, Unit Nadarajah and Haghighi distribution: properties and applications in quality control, Sci. Iran., 2021. https://doi.org/10.24200/sci.2021.57302.5167
    [20] F. A. Bhatti, A. Ali, G. G. Hamedani, M. Ç. Korkmaz, M. Ahmad, The unit generalized log Burr Ⅻ distribution: properties and application, AIMS Math., 6 (2021), 10222–10252. https://doi.org/10.3934/math.2021592 doi: 10.3934/math.2021592
    [21] M. Ç. Korkmaz, C. Chesneau, Z. S. Korkmaz, The unit folded normal distribution: a new unit probability distribution with the estimation procedures, quantile regression modeling and educational attainment applications, J. Reliab. Stat. Stud., 15 (2022), 261–298. https://doi.org/10.13052/jrss0974-8024.15111 doi: 10.13052/jrss0974-8024.15111
    [22] H. E. Elghaly, M. A. Abd Elgawad, B. Tian, A novel alternative to the beta and Kumaraswamy distributions for double bounded hydroclimatology data, IEEE Access, 13 (2025), 111217–111236. https://doi.org/10.1109/ACCESS.2025.3583265 doi: 10.1109/ACCESS.2025.3583265
    [23] F. Condino, F. Domma, Unit distributions: a general framework, some special cases, and the regression unit-Dagum models, Mathematics, 11 (2023), 2888. https://doi.org/10.3390/math11132888 doi: 10.3390/math11132888
    [24] W. Weibull, A statistical distribution function of wide applicability, J. Appl. Mech., 1951, 1–5.
    [25] A. S. Hassan, R. S. Alharbi, Different estimation methods for the unit inverse exponentiated Weibull distribution, Commun. Stat. Appl. Methods, 30 (2023), 191–213. https://doi.org/10.29220/CSAM.2023.30.2.191 doi: 10.29220/CSAM.2023.30.2.191
    [26] A. M. A. El-latif, O. A. Alqasem, J. K. Okutu, C. Tanış, L. P. Sapkota, N. A. Noori, A flexible extension of the unit upper truncated Weibull distribution: statistical analysis with applications on geology, engineering, and radiation data, J. Radiat. Res. Appl. Sci., 18 (2025), 101434. https://doi.org/10.1016/j.jrras.2025.101434 doi: 10.1016/j.jrras.2025.101434
    [27] T. Dimitrakopoulou, K. Adamidis, S. Loukas, A lifetime distribution with an upside-down bathtub-shaped hazard function, IEEE Trans. Reliab., 56 (2007), 308–311. https://doi.org/10.1109/TR.2007.895304 doi: 10.1109/TR.2007.895304
    [28] G. Azedine, Characterization of the power distribution based on the lower records, Appl. Math. Sci., 7 (2013), 5259–5267. https://doi.org/10.12988/ams.2013.36326 doi: 10.12988/ams.2013.36326
    [29] M. H. Tahir, M. Alizadeh, M. Mansoor, G. M. Cordeiro, M. Zubair, The Weibull-power function distribution with applications, Hacet. J. Math. Stat., 45 (2016), 245–265.
    [30] A. Mohammadi, M. Jalili-Ghazizadeh, I. Moslehi, E. Yousefi-Khoshqalb, Survival analysis of water distribution network under intermittent water supply conditions, Water Supply, 20 (2020), 3531–3541. https://doi.org/10.2166/ws.2020.228 doi: 10.2166/ws.2020.228
    [31] K. Edward, K. Beata, K. Dariusz, M. Dariusz, Survival function in the analysis of the factors influencing the reliability of water wells operation, Water Resour. Manage., 33 (2019), 4909–4921. https://doi.org/10.1007/s11269-019-02419-0 doi: 10.1007/s11269-019-02419-0
    [32] E. J. Veres-Ferrer, J. M. Pavía, On the relationship between the reversed hazard rate and elasticity, Stat. Pap., 55 (2014), 275–284. https://doi.org/10.1007/s00362-012-0470-1 doi: 10.1007/s00362-012-0470-1
    [33] A. S. Hassan, A. Al-Omari, H. F. Nagy, Stress–strength reliability for the generalized inverted exponential distribution using MRSS, Iran. J. Sci. Technol. Trans. A: Sci., 45 (2021), 641–659. https://doi.org/10.1007/s40995-020-01033-9 doi: 10.1007/s40995-020-01033-9
    [34] A. J. Lemonte, A new exponential-type distribution with constant, decreasing, increasing, upside-down bathtub and bathtub-shaped failure rate function, Comput. Stat. Data Anal., 62 (2013), 149–170. https://doi.org/10.1016/j.csda.2013.01.011 doi: 10.1016/j.csda.2013.01.011
    [35] M. R. Spiegel, S. Lipschutz, J. Liu, Mathematical handbook of formulas and tables, 3 Eds., New York: McGraw-Hill, 2009.
    [36] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, C. W. Clark, The NIST handbook of mathematical functions, New York: Cambridge University Press, 2010.
    [37] S. Ferrari, F. Cribari-Neto, Beta regression for modelling rates and proportions, J. Appl. Stat., 31 (2004), 799–815. https://doi.org/10.1080/0266476042000214501 doi: 10.1080/0266476042000214501
    [38] A. L. Bowley, Elements of statistics, 1926.
    [39] J. J. A. Moors, A quantile alternative for kurtosis, J. R. Stat. Soc. Ser. D (Stat.), 37 (1988), 25–32. https://doi.org/10.2307/2348376 doi: 10.2307/2348376
    [40] G. M. Mansour, M. A. Abd Elgawad, A. S. Al-Moisheer, H. M. Barakat, M. A. Alawady, I. A. Husseiny, et al., Bivariate Epanechnikov-Weibull distribution based on Sarmanov copula: properties, simulation, and uncertainty measures with applications, AIMS Math., 10 (2025), 12689–12725. https://doi.org/10.3934/math.2025572 doi: 10.3934/math.2025572
    [41] T. Makelainen, K. Schmidt, G. P. H. Styan, On the existence and uniqueness of the maximum likelihood estimate of a vector-valued parameter in fixed-size samples, Ann. Statist., 9 (1981), 758–767. https://doi.org/10.1214/aos/1176345516 doi: 10.1214/aos/1176345516
    [42] Z. Shah, D. M. Khan, S. Hussain, N. Iqbal, J. T. Seong, S. N. Alaziz, et al., A new flexible exponent power family of distributions with biomedical data analysis, Heliyon, 10 (2024), e32203. https://doi.org/10.1016/j.heliyon.2024.e32203 doi: 10.1016/j.heliyon.2024.e32203
    [43] O. A. Alamri, A. H. Alessa, E. Hussam, M. H. Alhelali, M. Kilai, Statistical modelling for the Covid-19 mortality rate in the kingdom of Saudi Arabia, Alex. Eng. J., 68 (2023), 517–526. https://doi.org/10.1016/j.aej.2023.01.024 doi: 10.1016/j.aej.2023.01.024
    [44] H. Linhart, W. Zucchini, Model selection, John Wiley & Sons, 1986.
    [45] R. Dasgupta, On the distribution of Burr with applications, Sankhya B, 73 (2011), 1–19. https://doi.org/10.1007/s13571-011-0015-y doi: 10.1007/s13571-011-0015-y
    [46] N. A. H. Abdelfattah, R. M. Sayed, Comparative efficacy of gamma and microwave radiation in protecting peppermint from infestation by drugstore beetle (Stegobium paniceum) L., Int. J. Trop. Insect Sci., 42 (2022), 1367–1372. https://doi.org/10.1007/s42690-021-00655-9 doi: 10.1007/s42690-021-00655-9
    [47] M. Muhammad, L. Liu, A new three parameter lifetime model: the complementary Poisson generalized half logistic distribution, IEEE Access, 9 (2021), 60089–60107. https://doi.org/10.1109/ACCESS.2021.3071555 doi: 10.1109/ACCESS.2021.3071555
    [48] E. E. Hassan, D. Zhang, The usage of logistic regression and artificial neural networks for evaluation and predicting property-liability insurers' solvency in Egypt, Data Sci. Finance Econ., 1 (2021), 215–234. https://doi.org/10.3934/DSFE.2021012 doi: 10.3934/DSFE.2021012
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(571) PDF downloads(36) Cited by(1)

Article outline

Figures and Tables

Figures(12)  /  Tables(24)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog