Taking white noise, Lévy jumps, and periodic factors in the environments into account, we formulated a periodic stochastic Gompertz model with impulsive harvesting and investigated its optimal impulsive exploitation problem. For periodic stochastic ecosystems with Lévy jumps and impulsive harvesting, two traditional approaches, the Fokker-Planck equation approach and ergodicity-based approach used to study the optimal exploitation problems were invalid because for almost all such ecosystems, one could not solve the associated Fokker-Planck equations. In addition, the ecosystems have no traditional non-boundary invariant measures. The present study utilized a different method. By exploring the associated Hamilton function, we derived an optimal exploitation strategy. An example was also introduced to illustrate the theoretical results.
Citation: Weiming Ji, Meng Liu. Optimal exploitation of a periodic Gompertz equation with random fluctuations[J]. AIMS Mathematics, 2025, 10(8): 18770-18783. doi: 10.3934/math.2025838
Taking white noise, Lévy jumps, and periodic factors in the environments into account, we formulated a periodic stochastic Gompertz model with impulsive harvesting and investigated its optimal impulsive exploitation problem. For periodic stochastic ecosystems with Lévy jumps and impulsive harvesting, two traditional approaches, the Fokker-Planck equation approach and ergodicity-based approach used to study the optimal exploitation problems were invalid because for almost all such ecosystems, one could not solve the associated Fokker-Planck equations. In addition, the ecosystems have no traditional non-boundary invariant measures. The present study utilized a different method. By exploring the associated Hamilton function, we derived an optimal exploitation strategy. An example was also introduced to illustrate the theoretical results.
| [1] | C. W. Clark, Mathematical bioeconomics: The mathematics of conservation, New York: John Wiley & Sons, 2010. https://doi.org/10.1007/978-3-642-454 |
| [2] | A. M. Freeman Ⅲ, J. A. Herriges, C. L. Kling, The measurement of environmental and resource values: Theory and methods, New York: Routledge, 2014. https://doi.org/10.4324/9781315780917 |
| [3] | R. M. May, Stability and complexity in model ecosystems, Princeton University Press, 1973. |
| [4] | R. Lande, S. Engen, B. Saether, Stochastic population dynamics in ecology and conservation, London: OUP Oxford, 2003. |
| [5] |
J. R. Beddington, R. M. May, Harvesting natural populations in a randomly fluctuating environment, Science, 197 (1977), 463–465. https://doi.org/10.1126/science.197.4302.463 doi: 10.1126/science.197.4302.463
|
| [6] |
W. Li, K. Wang, Optimal harvesting policy for general stochastic logistic population model, J. Math. Anal. Appl., 368 (2010), 420–428. https://doi.org/10.1016/j.jmaa.2010.04.002 doi: 10.1016/j.jmaa.2010.04.002
|
| [7] |
X. Zou, W. Li, K. Wang, Ergodic method on optimal harvesting for a stochastic Gompertz-type diffusion process, Appl. Math. Lett., 26 (2013), 170–174. https://doi.org/10.1016/j.aml.2012.08.006 doi: 10.1016/j.aml.2012.08.006
|
| [8] |
M. Liu, C. Bai, Analysis of a stochastic tri-trophic food-chain model with harvesting, J. Math. Biol., 73 (2016), 597–625. https://doi.org/10.1007/s00285-016-0970-z doi: 10.1007/s00285-016-0970-z
|
| [9] |
M. Liu, C. Bai, Optimal harvesting of a stochastic mutualism model with Lévy jumps, Appl. Math. Comput., 276 (2016), 301–309. https://doi.org/10.1016/j.amc.2015.11.089 doi: 10.1016/j.amc.2015.11.089
|
| [10] |
H. Qiu, W. Deng, Optimal harvesting of a stochastic delay logistic model with Lévy jumps, J. Phys. A Math. Theor., 49 (2016), 405601. https://doi.org/10.1088/1751-8113/49/40/405601 doi: 10.1088/1751-8113/49/40/405601
|
| [11] |
Y. Zhao, S. Yuan, Optimal harvesting policy of a stochastic two-species competitive model with Lévy noise in a polluted environment, Physica A, 477 (2017), 20–33. https://doi.org/10.1016/j.physa.2017.02.019 doi: 10.1016/j.physa.2017.02.019
|
| [12] |
H. Qiu, W. Deng, Optimal harvesting of a stochastic delay competitive Lotka-Volterra model with Lévy jumps, Appl. Math. Comput., 317 (2018), 210–222. https://doi.org/10.1016/j.amc.2017.08.044 doi: 10.1016/j.amc.2017.08.044
|
| [13] |
G. Liu, X. Meng, Optimal harvesting strategy for a stochastic mutualism system in a polluted environment with regime switching, Physica A, 536 (2019), 120893. https://doi.org/10.1016/j.physa.2019.04.129 doi: 10.1016/j.physa.2019.04.129
|
| [14] |
X. Zou, Y. Zheng, Stochastic modelling and analysis of harvesting model: Application to "summer fishing moratorium" by intermittent control, Discrete Cont. Dyn. B, 26 (2021), 5047–5066. https://doi.org/10.3934/dcdsb.2020332 doi: 10.3934/dcdsb.2020332
|
| [15] |
Z. Zeng, Asymptotically periodic solution and optimal harvesting policy for Gompertz system, Nonlinear Anal. Real, 12 (2011), 1401–1409. https://doi.org/10.1016/j.nonrwa.2010.10.001 doi: 10.1016/j.nonrwa.2010.10.001
|
| [16] |
M. Liu, Optimal harvesting of stochastic population models with periodic coefficients, J. Nonlinear Sci., 32 (2022), 23. https://doi.org/10.1007/s00332-021-09758-6 doi: 10.1007/s00332-021-09758-6
|
| [17] |
J. Fang, M. Xu, Optimal dispersal strategy for a stage-structured population model in discrete periodic habitat, J. Differ. Equations, 399 (2024), 363–390. https://doi.org/10.1016/j.jde.2024.03.033 doi: 10.1016/j.jde.2024.03.033
|
| [18] |
F. Córdova-Lepe, R. Del Valle, G. Robledo, A pulse fishery model with closures as function of the catch: Conditions for sustainability, Math. Biosci., 239 (2012), 169–177. https://doi.org/10.1016/j.mbs.2012.04.004 doi: 10.1016/j.mbs.2012.04.004
|
| [19] |
J. Dou, S. Li, Optimal impulsive harvesting policies for single-species populations, Appl. Math. Comput., 292 (2017), 145–155. https://doi.org/10.1016/j.amc.2016.07.027 doi: 10.1016/j.amc.2016.07.027
|
| [20] |
Z. Wang, M. Liu, Optimal impulsive harvesting strategy of a stochastic Gompertz model in periodic environments, Appl. Math. Lett., 125 (2022), 107733. https://doi.org/10.1016/j.aml.2021.107733 doi: 10.1016/j.aml.2021.107733
|
| [21] |
G. Jang, G. Cho, Optimal harvest strategy based on a discrete age-structured model with monthly fishing effort for chub mackerel, Scomber japonicus, in South Korea, Appl. Math. Comput., 425 (2022), 127059. https://doi.org/10.1016/j.amc.2022.127059 doi: 10.1016/j.amc.2022.127059
|
| [22] |
J. Lawson, E. Braverman, Optimality and sustainability of delayed impulsive harvesting, Commun. Nonlinear Sci., 117 (2023), 106914. https://doi.org/10.1016/j.cnsns.2022.106914 doi: 10.1016/j.cnsns.2022.106914
|
| [23] |
T. Strohmeier, G. G. Oppegard, $\emptyset$. Strand, Predation of hatchery-reared scallop spat (Pecten maximus L.) by theBallan wrasse (Labrus bergylta)-consequences for sea ranching, Aquaculture, 254 (2006), 341–346. https://doi.org/10.1016/j.aquaculture.2005.09.029 doi: 10.1016/j.aquaculture.2005.09.029
|
| [24] | R. Pallardy, Deepwater Horizon oil spill, In: Encyclopedia britannica, 2010. |
| [25] |
C. Liu, Y. Tian, P. Chen, L. Cheung, Stochastic dynamic effects of media coverage and incubation on a distributed delayed epidemic system with Lévy jumps, Chaos Soliton. Fract., 182 (2024), 114781. https://doi.org/10.1016/j.chaos.2024.114781 doi: 10.1016/j.chaos.2024.114781
|
| [26] |
O. Nikan, J. A. Tenreiro Machado, A. Golbabai, J. Rashidinia, Numerical evaluation of the fractional Klein-Kramers model arising in molecular dynamics, J. Comput. Phys., 428 (2021), 109983. https://doi.org/10.1016/j.jcp.2020.109983 doi: 10.1016/j.jcp.2020.109983
|
| [27] |
X. Chen, D. Li, B. Tian, D. Yang, Ergodic stationary distribution and extinction of stochastic delay chemostat system with Monod-Haldane functional response and higher-order Lévy jumps, Commun. Nonlinear Sci., 126 (2023), 107416. https://doi.org/10.1016/j.cnsns.2023.107416 doi: 10.1016/j.cnsns.2023.107416
|
| [28] |
C. Frenzen, J. Murray, A cell kinetics justification for Gompertz' equation, SIAM J. Appl. Math., 46 (1986), 614–629. https://doi.org/10.1137/0146042 doi: 10.1137/0146042
|
| [29] |
J. Ge, M. Liu, Mathematical modelling and properties of stochastic polluted population dynamics with Allee effect, Bull. Malays. Math. Sci. Soc., 48 (2025), 45. https://doi.org/10.1007/s40840-024-01812-2 doi: 10.1007/s40840-024-01812-2
|
| [30] |
J. Ge, W. Ji, M. Liu, Threshold behavior of a stochastic predator-prey model with fear effect and regime-switching, Appl. Math. Lett., 164 (2025), 109476. https://doi.org/10.1016/j.aml.2025.109476 doi: 10.1016/j.aml.2025.109476
|
| [31] |
M. Liu, M. Deng, W. Ji, Dynamics of a stochastic predator-prey model with fear effect and Beddington-DeAngelis functional response, Discrete Cont. Dyn. B, 30 (2025), 3084–3103. https://doi.org/10.3934/dcdsb.2025009 doi: 10.3934/dcdsb.2025009
|
| [32] |
C. A. Braumann, Itô versus Stratonovich calculus in random population growth, Math. Biosci., 206 (2007), 81–107. https://doi.org/10.1016/j.mbs.2004.09.002 doi: 10.1016/j.mbs.2004.09.002
|
| [33] | D. Applebaum, Lévy processes and stochastics calculus, London: Cambridge University Press, 2009. |
| [34] | E. L. Crow, K. Shimizu, Lognormal distributions, New York: Marcel Dekker, 1987. |
| [35] |
Y. Sabbar, M. Mehdaoui, M. Tilioua, K. S. Nisar, Probabilistic analysis of a disturbed SIQP-SI model of mosquito-borne diseases with human quarantine strategy and independent Poisson jumps, Model. Earth Syst. Environ., 10 (2024), 4695–4715. https://doi.org/10.1007/s40808-024-02018-y doi: 10.1007/s40808-024-02018-y
|
| [36] |
Q. Zhu, Event-triggered sampling problem for exponential stability of stochastic nonlinear delay systems driven by Lévy processes, IEEE T. Automat. Contr., 70 (2025), 1176–1183. https://doi.org/10.1109/TAC.2024.3448128 doi: 10.1109/TAC.2024.3448128
|
| [37] |
H. Yuan, Q. Zhu, The well-posedness and stabilities of mean-field stochastic differential equations driven by G-Brownian motion, SIAM J. Control Optim., 63 (2025), 596–624. https://doi.org/10.1137/23M1593681 doi: 10.1137/23M1593681
|