In this paper, a stochastic Kawasaki disease model was investigated. First, it was theoretically proved that the solution of the stochastic model is positive and global, as well as the existence of an ergodic stationary distribution. Subsequently, we derived the exact expression of the probability density function around a quasi-equilibrium point through the four-dimensional Fokker-Planck equation. Finally, some numerical simulations were introduced to validate the theoretical findings.
Citation: Ying He, Bo Bi. Ergodic property and density function of a stochastic Kawasaki disease model[J]. AIMS Mathematics, 2025, 10(8): 18680-18715. doi: 10.3934/math.2025835
In this paper, a stochastic Kawasaki disease model was investigated. First, it was theoretically proved that the solution of the stochastic model is positive and global, as well as the existence of an ergodic stationary distribution. Subsequently, we derived the exact expression of the probability density function around a quasi-equilibrium point through the four-dimensional Fokker-Planck equation. Finally, some numerical simulations were introduced to validate the theoretical findings.
| [1] | T. Kawasaki, Acute febrile mucocutaneous syndrome with lymphoid involvement with specific desquamation of the fingers and toes in children, Arerugi, 16 (1967), 178–222. |
| [2] |
B. W. McCrindle, A. H. Rowley, J. W. Newburger, J. C. Burns, A. F. Bolger, M. Gewitz, et al., Diagnosis, treatment, and long-term management of Kawasaki disease: A scientific statement for health professionals from the American Heart Association, Circulation, 135 (2017), e927–e999. http://dx.doi.org/10.1161/CIR.0000000000000484 doi: 10.1161/CIR.0000000000000484
|
| [3] |
C. Galeotti, S. V. Kaveri, R. Cimaz, I. Koné-Paut, J. Bayry, Predisposing factors, pathogenesis and therapeutic intervention of Kawasaki disease, Drug Discov. Today, 21 (2016), 1850–1857. http://dx.doi.org/10.1016/j.drudis.2016.08.004 doi: 10.1016/j.drudis.2016.08.004
|
| [4] |
J. C. Burns, M. P. Glode, Kawasaki syndrome, Lancet, 364 (2004), 533–544. https://doi.org/10.1016/s0140-6736(04)16814-1 doi: 10.1016/s0140-6736(04)16814-1
|
| [5] |
R. Qiang, W. Ma, K. Guo, H. Du, The differential equation model of pathogenesis of Kawasaki disease with theoretical analysis, Math. Biosci. Eng., 16 (2019), 3488–3511. http://dx.doi.org/10.3934/mbe.2019175 doi: 10.3934/mbe.2019175
|
| [6] |
A. N. Mikhaylov, D. V. Guseinov, A. I. Belov, D. S. Korolev, V. A. Shishmakova, M. N. Koryazhkina, et al., Stochastic resonance in a metal-oxide memristive device, Chaos Solitons Fract., 144 (2021), 110723. http://dx.doi.org/10.1016/j.chaos.2021.110723 doi: 10.1016/j.chaos.2021.110723
|
| [7] |
B. Lisowski, D. Valenti, B. Spagnolo, M. Bier, E. Gudowska-Nowak, Stepping molecular motor amid lévy white noise, Phys. Rev. E, 91 (2015), 042713. http://dx.doi.org/10.1103/physreve.91.042713 doi: 10.1103/physreve.91.042713
|
| [8] |
C. Guarcello, D. Valenti, B. Spagnolo, V. Pierro, G. Filatrella, Anomalous transport effects on switching currents of graphene-based Josephson junctions, Nanotechnology, 28 (2017), 134001. http://dx.doi.org/10.1088/1361-6528/aa5e75 doi: 10.1088/1361-6528/aa5e75
|
| [9] |
A. Carollo, D. Valenti, B. Spagnolo, Geometry of quantum phase transitions, Phys. Rep., 838 (2020), 1–72. http://dx.doi.org/10.1016/j.physrep.2019.11.002 doi: 10.1016/j.physrep.2019.11.002
|
| [10] |
N. V. Agudov, A. V. Safonov, A. V. Krichigin, A. A. Kharcheva, A. A. Dubkov, D. Valenti, et al., Nonstationary distributions and relaxation times in a stochastic model of memristor, J. Stat. Mech., 2 (2020), 024003. http://dx.doi.org/10.1088/1742-5468/ab684a doi: 10.1088/1742-5468/ab684a
|
| [11] |
Y. V. Ushakov, A. A. Dubkov, B. Spagnolo, Spike train statistics for consonant and dissonant musical accords in a simple auditory sensory model, Phys. Rev. E, 81 (2010), 041911. http://dx.doi.org/10.1103/PhysRevE.81.041911 doi: 10.1103/PhysRevE.81.041911
|
| [12] |
A. V. Yakimov, D. Q. Filatov, O. N. Gorshkov, D. A. Antonov, D. A. Liskin, I. N. Antonov, et al., Measurement of the activation energies of oxygen ion diffusion in yttria stabilized Zirconia by flicker noise spectroscopy, Appl. Phys. Lett., 114 (2019), 253506. http://dx.doi.org/10.1063/1.5098066 doi: 10.1063/1.5098066
|
| [13] |
A. Carollo, B. Spagnolo, A. A. Dubkov, D. Valenti, On quantumness in multi-parameter quantum estimation, J. Stat. Mech., 9 (2019), 094010. http://dx.doi.org/10.1088/1742-5468/ab6f5e doi: 10.1088/1742-5468/ab6f5e
|
| [14] |
Z. Chen, X. Liu, C. Wei, Stationary distribution of a stochastic Kawasaki disease model with Markov switching, Appl. Math. Lett., 116 (2021), 094010. http://dx.doi.org/10.1016/j.aml.2020.106991 doi: 10.1016/j.aml.2020.106991
|
| [15] | R. Z. Khasminskii, Stochastic stability of differential equations, Heidelberg: Springer, 1980. http://dx.doi.org/10.1007/978-94-009-9121-7 |
| [16] |
J. Ge, W. Zuo, D. Jiang, Stationary distribution and density function analysis of a stochastic epidemic HBV model, Math. Comput. Simulat., 191 (2022), 232–255. http://dx.doi.org/10.1016/j.matcom.2021.08.003 doi: 10.1016/j.matcom.2021.08.003
|
| [17] | C. W. Gardiner, Handbook of stochastic methods: For physics, chemistry and the natural sciences, Berlin: Springer, 1990. |
| [18] |
H. Roozen, An asymptotic solution to a two-dimensional exit problem arising in population dynamics, SIAM J. Appl. Math., 49 (1989), 1793–1810. http://dx.doi.org/10.1137/0149110 doi: 10.1137/0149110
|
| [19] |
D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43 (2001), 525–546. http://dx.doi.org/10.1137/S0036144500378302 doi: 10.1137/S0036144500378302
|