Research article Special Issues

Modeling Monkeypox dynamics with human–rodent interactions and waning vaccination

  • Received: 28 June 2025 Revised: 07 August 2025 Accepted: 11 August 2025 Published: 18 August 2025
  • MSC : 34D08, 34D20, 34D23, 92D30, 93D05, 97M10, 97M60

  • The global outbreak of the monkeypox virus (Mpox) in 2022–2023, which affected over 100 countries, has underscored the urgent need for robust public health interventions and predictive modeling tools. In this study, we develop a novel mathematical model that captures the transmission dynamics of Mpox between human and rodent populations, incorporating both direct and environmental transmission pathways as well as the effects of vaccination. We prove the model's positivity and boundedness to ensure epidemiological feasibility. Using the next-generation matrix method, we derive the basic reproduction number and assess the local and global stability of both disease-free and endemic equilibria through Lyapunov-based techniques. Sensitivity analysis identifies critical parameters influencing Mpox spread and informs targeted intervention strategies. Numerical simulations illustrate how varying key parameters such as vaccination rates, recovery rates, and transmission pathways affect disease progression. The results emphasize that increasing vaccination coverage and enhancing recovery rates can significantly reduce disease burden. This model provides a comprehensive framework to support evidence-based public health decision-making for controlling future Mpox outbreaks.

    Citation: Turki D. Alharbi, Md Rifat Hasan. Modeling Monkeypox dynamics with human–rodent interactions and waning vaccination[J]. AIMS Mathematics, 2025, 10(8): 18660-18679. doi: 10.3934/math.2025834

    Related Papers:

  • The global outbreak of the monkeypox virus (Mpox) in 2022–2023, which affected over 100 countries, has underscored the urgent need for robust public health interventions and predictive modeling tools. In this study, we develop a novel mathematical model that captures the transmission dynamics of Mpox between human and rodent populations, incorporating both direct and environmental transmission pathways as well as the effects of vaccination. We prove the model's positivity and boundedness to ensure epidemiological feasibility. Using the next-generation matrix method, we derive the basic reproduction number and assess the local and global stability of both disease-free and endemic equilibria through Lyapunov-based techniques. Sensitivity analysis identifies critical parameters influencing Mpox spread and informs targeted intervention strategies. Numerical simulations illustrate how varying key parameters such as vaccination rates, recovery rates, and transmission pathways affect disease progression. The results emphasize that increasing vaccination coverage and enhancing recovery rates can significantly reduce disease burden. This model provides a comprehensive framework to support evidence-based public health decision-making for controlling future Mpox outbreaks.



    加载中


    [1] B. Y. Liu, S. L. Jing, H. Xiang, H. F. Huo, Modeling the transmission dynamic of Mpox virus with Vertical transmission, Math. Method. Appl. Sci., 48 (2025), 13517–13529. https://doi.org/10.1002/MMA.11119 doi: 10.1002/MMA.11119
    [2] F. A. Wireko, J. N. Martey, I. K. Adu, B. E. Owusu, S. Ndogum, J. K. K. Asamoah, Modeling the impact of double-dose vaccination and saturated transmission dynamics on Mpox control, Eng. Rep., 7 (2025), 1–24. https://doi.org/10.1002/ENG2.70144 doi: 10.1002/ENG2.70144
    [3] M. Helikumi, F. Ojija, A. Mhlanga, Dynamical analysis of Mpox disease with environmental effects, Fractal Fract., 9 (2025), 1–27. https://doi.org/10.3390/FRACTALFRACT9060356 doi: 10.3390/FRACTALFRACT9060356
    [4] O. J. Peter, C. E. Madubueze, M. M. Ojo, F. A. Oguntolu, T. A. Ayoola, Modeling and optimal control of monkeypox with cost-effective strategies, Model. Earth Syst. Env., 9 (2023), 1989–2007. https://doi.org/10.1007/S40808-022-01607-Z doi: 10.1007/S40808-022-01607-Z
    [5] H. Harapan, Y. Ophinni, D. Megawati, A. Frediansyah, S. S. Mamada, M. Salampe, et al., Monkeypox: A comprehensive review, Viruses, 14 (2022), 1–24. https://doi.org/10.3390/V14102155 doi: 10.3390/V14102155
    [6] M. B. Martinez, Y. Yang, B. Jafari, A. Kaur, Z. A. Butt, H. H. Chen, et al., Monkeypox: A review of epidemiological modelling studies and how modelling has led to mechanistic insight, Epidemiol. Infect., 151 (2023), 1–16. https://doi.org/10.1017/S0950268823000791 doi: 10.1017/S0950268823000791
    [7] A. Venkatesh, M. Manivel, K. Arunkumar, M. P. Raj, Shyamsunder, S. D. Purohit, A fractional mathematical model for vaccinated humans with the impairment of Monkeypox transmission, Eur. Phys. J.-Spec. Top., 2024 (2024), 1–21. https://doi.org/10.1140/EPJS/S11734-024-01211-5 doi: 10.1140/EPJS/S11734-024-01211-5
    [8] W. Okongo, J. O. Abonyo, D. Kioi, S. E. Moore, S. N. Aguegboh, Mathematical modeling and optimal control analysis of Monkeypox virus in contaminated environment, Model. Earth Syst. Env., 10 (2024), 3969–3994. https://doi.org/10.1007/S40808-024-01987-4 doi: 10.1007/S40808-024-01987-4
    [9] S. Okyere, J. A. Prah, Modeling and analysis of Monkeypox disease using fractional derivatives, Results Eng., 17 (2023), 100786–100794. https://doi.org/10.1016/j.rineng.2022.100786 doi: 10.1016/j.rineng.2022.100786
    [10] J. Molla, I. Sekkak, A. M. Ortiz, I. Moyles, B. Nasri, Mathematical modeling of Mpox: A scoping review, One Health, 16 (2023), 100540–100547. https://doi.org/10.1016/J.ONEHLT.2023.100540 doi: 10.1016/J.ONEHLT.2023.100540
    [11] W. Adel, A. Elsonbaty, A. Aldurayhim, A. E. Mesady, Investigating the dynamics of a novel fractional-order monkeypox epidemic model with optimal control, Alex. Eng. J., 73 (2023), 519–542. https://doi.org/10.1016/J.AEJ.2023.04.051 doi: 10.1016/J.AEJ.2023.04.051
    [12] A. Omame, A. A. Raezah, G. A. Okeke, T. Akram, A. Iqbal, Assessing the impact of intervention measures in a mathematical model for monkeypox and COVID-19 co-dynamics in a high-risk population, Model. Earth Syst. Env., 10 (2024), 6341–6355. https://doi.org/10.1007/S40808-024-02132-X doi: 10.1007/S40808-024-02132-X
    [13] M. R. Hasan, A. Hobiny, A. Alshehri, Analysis of Vector-host SEIR-SEI Dengue epidemiological model, Int. J. Anal. Appl., 20 (2022), 1–19. https://doi.org/10.28924/2291-8639-20-2022-57 doi: 10.28924/2291-8639-20-2022-57
    [14] W. Okongo, J. A. Okelo, D. K. Gathungu, S. E. Moore, S. A. Nnaemeka, Transmission dynamics of Monkeypox virus with age-structured human population: A mathematical modeling approach, J Appl. Math., 2024 (2024), 1–17. https://doi.org/10.1155/2024/9173910 doi: 10.1155/2024/9173910
    [15] T. D. Alharbi, M. R. Hasan, Global stability and sensitivity analysis of vector-host dengue mathematical model, AIMS Math., 9 (2024), 32797–32818. https://doi.org/10.3934/MATH.20241569 doi: 10.3934/MATH.20241569
    [16] O. J. Peter, A. Abidemi, M. M. Ojo, T. A. Ayoola, Mathematical model and analysis of Monkeypox with control strategies, Eur. Phys. J. Plus, 138 (2023), 1–20. https://doi.org/10.1140/EPJP/S13360-023-03865-X doi: 10.1140/EPJP/S13360-023-03865-X
    [17] P. Kumar, M. Vellappandi, Z. A. Khan, S. M. Sivalingam, A. Kaziboni, V. Govindaraj, A case study of Monkeypox disease in the United States using mathematical modeling with real data, Math. Comput. Simulat., 213 (2023), 444–465. https://doi.org/10.1016/J.MATCOM.2023.06.016 doi: 10.1016/J.MATCOM.2023.06.016
    [18] F. M. Allehiany, M. H. DarAssi, I. Ahmad, M.A. Khan, E. M. Tag-Eldin, Mathematical modeling and backward bifurcation in Monkeypox disease under real observed data, Results Phys., 50 (2023), 106557–106570. https://doi.org/10.1016/J.RINP.2023.106557. doi: 10.1016/J.RINP.2023.106557
    [19] K. Soni, A. K. Sinha, Modeling and stability analysis of the transmission dynamics of Monkeypox with control intervention, Part. Differ. Equ. Appl. Math., 10 (2024), 100730–100746. https://doi.org/10.1016/J.PADIFF.2024.100730 doi: 10.1016/J.PADIFF.2024.100730
    [20] T. D. Awoke, S. M. Kassa, Y. A. Terefe, M. D. Asfaw, Modeling on cost-effectiveness of monkeypox disease control strategies with consideration of environmental transmission effects in the presence of vaccination, Model. Earth Syst. Env., 10 (2024), 6105–6132. https://doi.org/10.1007/S40808-024-02108-X doi: 10.1007/S40808-024-02108-X
    [21] A. Alshehri, S. Ullah, Optimal control analysis of Monkeypox disease with the impact of environmental transmission, AIMS Math., 8 (2023), 16926–16960 https://doi.org/10.3934/MATH.2023865 doi: 10.3934/MATH.2023865
    [22] D. Bentaleb, Z. Khatar, S. Amine, Epidemiological modeling of Monkeypox clades: A dual-strain SEIR approach with stability, bifurcation, and sensitivity analysis, Model. Earth Syst. Env., 10 (2024), 6949–6963. https://doi.org/10.1007/S40808-024-02162-5 doi: 10.1007/S40808-024-02162-5
    [23] Y. Guo, T. Li, Modeling the competitive transmission of the Omicron strain and Delta strain of COVID-19, J. Math. Anal. Appl., 526 (2023). https://doi.org/10.1016/j.jmaa.2023.127283 doi: 10.1016/j.jmaa.2023.127283
    [24] T. Li, Y. Guo, Modeling and optimal control of mutated COVID-19 (Delta strain) with imperfect vaccination, Chaos Soliton. Fract., 156 (2022), 111825–111844. https://doi.org/10.1016/J.CHAOS.2022.111825 doi: 10.1016/J.CHAOS.2022.111825
    [25] Y. Guo, T. Li, Fractional-order modeling and optimal control of a new online game addiction model based on real data, Commun. Nonlinear Sci., 121 (2023), 107221. https://doi.org/10.1016/J.CNSNS.2023.107221 doi: 10.1016/J.CNSNS.2023.107221
    [26] M. Manivel, A. Venkatesh, S. Kumawat, Numerical simulation for the co-infection of Monkeypox and HIV model using fractal-fractional operator, Model. Earth Syst. Env., 11 (2025), 1–24. https://doi.org/10.1007/S40808-025-02359-2 doi: 10.1007/S40808-025-02359-2
    [27] A. Omame, S. A. Iyaniwura, Q. Han, A. Ebenezer, N. L. Bragazzi, X. Wang, et al., Dynamics of Mpox in an HIV endemic community: A mathematical modelling approach, Math. Biosci. Eng., 22 (2025), 225–259. https://doi.org/10.3934/MBE.2025010 doi: 10.3934/MBE.2025010
    [28] N. L. Bragazzi, Q. Han, S. A. Iyaniwura, A. Omame, A. Shausan, X. Wang, et al., Adaptive changes in sexual behavior in the high-risk population in response to human Monkeypox transmission in Canada can help control the outbreak: Insights from a two-group, two-route epidemic model, J Med. Virol., 95 (2023), 1–12. https://doi.org/10.1002/JMV.28575 doi: 10.1002/JMV.28575
    [29] B. Liu, S. Farid, S. Ullah, M. Altanji, R. Nawaz, S. W. Teklu, Mathematical assessment of monkeypox disease with the impact of vaccination using a fractional epidemiological modeling approach, Sci. Rep., 13 (2023), 1–27. https://doi.org/10.1038/S41598-023-40745-X doi: 10.1038/S41598-023-40745-X
    [30] J. Bansal, A. Kumar, A. Kumar, A. Khan, T. Abdeljawad, Investigation of monkeypox disease transmission with vaccination effects using fractional order mathematical model under Atangana-Baleanu Caputo derivative, Model. Earth Syst. Env., 11 (2025), 1–25. https://doi.org/10.1007/S40808-024-02202-0 doi: 10.1007/S40808-024-02202-0
    [31] J. Kongson, C. Thaiprayoon, W. Sudsutad, Analysis of a mathematical model for the spreading of the monkeypox virus with constant proportional-Caputo derivative operator, AIMS Math., 10 (2025), 4000–4039. https://doi.org/10.3934/MATH.2025187 doi: 10.3934/MATH.2025187
    [32] S. Rashid, A. Bariq, I. Ali, S. Sultana, A. Siddiqa, S. K. Elagan, Dynamic analysis and optimal control of a hybrid fractional monkeypox disease model in terms of external factors, Sci. Rep., 15 (2025), 2944. https://doi.org/10.1038/S41598-024-83691-Y doi: 10.1038/S41598-024-83691-Y
    [33] F. O. Ochieng, Mathematical modeling of Mpox virus dynamics with a case study of Africa, Model. Earth Syst. Env., 11 (2025), 1–21. https://doi.org/10.1007/S40808-025-02369-0 doi: 10.1007/S40808-025-02369-0
    [34] Shyamsunder, M. Meena, A comparative analysis of vector-borne disease: Monkeypox transmission outbreak, J Appl. Math. Comput., 71 (2025), 1–37. https://doi.org/10.1007/S12190-025-02468-2 doi: 10.1007/S12190-025-02468-2
    [35] I. O. Idisi, K. Oshinubi, V. B. Sewanu, M. M. Yahaya, O. S. Olagbami, H. O. Edogbanya, Investigating Mpox strain dynamics using computational and data-driven approaches, Viruses, 17 (2025), 154. https://doi.org/10.3390/V17020154 doi: 10.3390/V17020154
    [36] M. Rabiu, E. J. Dansu, O. A. Mogbojuri, I. O. Idisi, M. M. Yahaya, P. Chiwira, et al., Modeling the sexual transmission dynamics of Mpox in the United States of America, Eur. Phys. J. Plus, 139 (2024), 1–20. https://doi.org/10.1140/EPJP/S13360-024-05020-6 doi: 10.1140/EPJP/S13360-024-05020-6
    [37] K. Kuga, J. Tanimoto, Which is more effective for suppressing an infectious disease: Imperfect vaccination or defense against contagion? J. Stat. Mech.-Theory E., 2018 (2018), 023407. https://doi.org/10.1088/1742-5468/AAAC3C doi: 10.1088/1742-5468/AAAC3C
    [38] J. Tanimoto, Sociophysics approach to epidemics, Singapore: Springer Singapore, 2021. https://doi.org/10.1007/978-981-33-6481-3
    [39] M. R. Hasan, A. Hobiny, A. Alshehri, Sensitivity analysis of Vector-host dynamic Dengue epidemic model, Commun. Math. Appl., 14 (2023), 1001–1017. https://doi.org/10.26713/CMA.V14I2.2119 doi: 10.26713/CMA.V14I2.2119
    [40] M. Qian, D. Li, Z. Hao, S. Hu, W. Li, An epidemiological model of Monkeypox: Model prediction and control application, BMC Infect. Dis., 25 (2025), 1–16. https://doi.org/10.1186/S12879-025-10873-Y doi: 10.1186/S12879-025-10873-Y
    [41] M. A. I. Islam, M. H. M. Mubassir, A. K. Paul, S. S. Shanta, A mathematical model for understanding and controlling monkeypox transmission dynamics in the USA and its implications for future epidemic management, Decod. Infect. Transm., 2 (2024), 100031. https://doi.org/10.1016/J.DCIT.2024.100031 doi: 10.1016/J.DCIT.2024.100031
    [42] E. Addai, M. Ngungu, M. A. Omoloye, E. Marinda, Modelling the impact of vaccination and environmental transmission on the dynamics of monkeypox virus under Caputo operator, Math. Biosci. Eng., 20 (2023), 10174–10199. https://doi.org/10.3934/MBE.2023446 doi: 10.3934/MBE.2023446
    [43] M. Al Qurashi, S. Rashid, A. M. Alshehri, F. Jarad, F. Safdar, New numerical dynamics of the fractional monkeypox virus model transmission pertaining to nonsingular kernels, Math. Biosci. Eng., 20 (2023), 402–436. https://doi.org/10.3934/MBE.2023019 doi: 10.3934/MBE.2023019
    [44] A. Khan, Y. Sabbar, A. Din, Stochastic modeling of the Monkeypox 2022 epidemic with cross-infection hypothesis in a highly disturbed environment, Math. Biosci. Eng., 19 (2022), 13560–13581. https://doi.org/10.3934/MBE.2022633 doi: 10.3934/MBE.2022633
    [45] S. Li, Samreen, S. Ullah, S. A. AlQahtani, S. M. Tag, A. Akgül, Mathematical assessment of Monkeypox with asymptomatic infection: Prediction and optimal control analysis with real data application, Results Phys., 51 (2023), 106726. https://doi.org/10.1016/J.RINP.2023.106726 doi: 10.1016/J.RINP.2023.106726
    [46] Samreen, S. Ullah, R. Nawaz, A. Alshehri, Mathematical modeling of monkeypox infection with optimized preventive control analysis: A case study with 2022 outbreak, Eur. Phys. J. Plus, 138 (2023), 1–34. https://doi.org/10.1140/EPJP/S13360-023-04305-6 doi: 10.1140/EPJP/S13360-023-04305-6
    [47] S. Usman, I. I. Adamu, Modeling the transmission dynamics of the Monkeypox virus infection with treatment and vaccination interventions, J. Appl. Math. Phys., 5 (2017), 2335–2353. https://doi.org/10.4236/JAMP.2017.512191 doi: 10.4236/JAMP.2017.512191
    [48] O. J. Peter, S. Kumar, N. Kumari, F. A. Oguntolu, K. Oshinubi, R. Musa, Transmission dynamics of Monkeypox virus: A mathematical modelling approach, Model. Earth Syst. Env., 8 (2022), 3423–3434. https://doi.org/10.1007/S40808-021-01313-2 doi: 10.1007/S40808-021-01313-2
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(710) PDF downloads(47) Cited by(0)

Article outline

Figures and Tables

Figures(10)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog