Research article Topical Sections

On the singular integral representation of the fractional powers of Jacobi differential operators

  • Received: 07 June 2025 Revised: 12 August 2025 Accepted: 14 August 2025 Published: 18 August 2025
  • MSC : 26A33, 42B10

  • In this paper, we introduce the fractional Jacobi operator and present its formulation in terms of a pseudo-differential operator via the Fourier–Jacobi transform. Furthermore, by employing the generalized shift operator related to the Jacobi operator, we establish a singular integral representation of the fractional Jacobi operator.

    Citation: Fethi Bouzeffour. On the singular integral representation of the fractional powers of Jacobi differential operators[J]. AIMS Mathematics, 2025, 10(8): 18641-18659. doi: 10.3934/math.2025833

    Related Papers:

  • In this paper, we introduce the fractional Jacobi operator and present its formulation in terms of a pseudo-differential operator via the Fourier–Jacobi transform. Furthermore, by employing the generalized shift operator related to the Jacobi operator, we establish a singular integral representation of the fractional Jacobi operator.



    加载中


    [1] A. Achour, K. Trimèche, La $ g $-fonction de Littlewood–Paley associée à un opérateur différentiel singulier sur $ (0, \infty) $, Ann. I. Fourier, 33 (1983), 203–226. https://doi.org/10.5802/aif.946 doi: 10.5802/aif.946
    [2] D. A. Orán, A. Córdoba, A. D. Martínez, Integral representation for fractional Laplace-Beltrami operators, Adv. Math., 328 (2018), 436–445. https://doi.org/10.1016/j.aim.2018.01.014 doi: 10.1016/j.aim.2018.01.014
    [3] R. L. Bagley, P. J. Torvik, A theoretical basis for the application of fractional calculus to viscoelasticity, J. Rheol., 27 (1983), 201–210. https://doi.org/10.1122/1.549724 doi: 10.1122/1.549724
    [4] V. Banica, The nonlinear Schrödinger equation on hyperbolic space, Commun. Part. Diff. Eq., 32 (2007), 1643–1677. https://doi.org/10.1080/03605300600854332 doi: 10.1080/03605300600854332
    [5] V. Banica, M. D. M. González, M. Sáez, Some constructions for the fractional Laplacian on noncompact manifolds, Rev. Mat. Iberoam., 31 (2015), 681–712. https://doi.org/10.4171/rmi/850 doi: 10.4171/rmi/850
    [6] J. Bertoin, Lévy processes, Cambridge: Cambridge University Press, 121 (1996).
    [7] F. Bouzeffour, M. Garayev, On the fractional Bessel operator, Integr. Transf. Spec. F., 33 (2022), 230–246. https://doi.org/10.1080/10652469.2021.1925268 doi: 10.1080/10652469.2021.1925268
    [8] B. Halouani, F. Bouzeffour, On the fractional Laplace–Bessel operator, AIMS Math., 9 (2024), 21524–21537. https://doi.org/10.3934/math.20241045 doi: 10.3934/math.20241045
    [9] F. Bouzeffour, On the generalized fractional Laplace–Bessel operator, Georgian Math. J., 32 (2025), 371–379. https://doi.org/10.1515/gmj-2024-2074 doi: 10.1515/gmj-2024-2074
    [10] F. Bouzeffour, W. Jedidi, On the fractional Dunkl–Laplacian, Fract. Calc. Appl. Anal., 27 (2024), 433–457. https://doi.org/10.1007/s13540-023-00225-5 doi: 10.1007/s13540-023-00225-5
    [11] L. A. Caffarelli, L. E. Silvestre, An extension problem related to the fractional Laplacian, Commun. Part. Diff. Eq., 32 (2007), 1245–1260. https://doi.org/10.1080/03605300600987306 doi: 10.1080/03605300600987306
    [12] H. Chébli, Théorème de Paley–Wiener associé à un opérateur différentiel singulier sur $(0, \infty)$, J. Equ. Aux Derives Partielles, 1979, 1–19.
    [13] R. Carmona, W. Masters, B. Simon, Relativistic Schrödinger operators: Asymptotic behavior of the eigenfunctions, J. Funct. Anal., 91 (1990), 11–142. https://doi.org/10.1016/0022-1236(90)90049-Q doi: 10.1016/0022-1236(90)90049-Q
    [14] I. Daubechies, E. H. Lieb, One-electron relativistic molecules with Coulomb interaction, Commun. Math. Phys., 90 (1983), 497–510. https://doi.org/10.1007/BF01216181 doi: 10.1007/BF01216181
    [15] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, New York: McGraw-Hill, 1953.
    [16] A. Fitouhi, Heat polynomials for a singular differential operator on $(0, \infty)$, Constr. Approx., 5 (1989), 241–270. https://doi.org/10.1007/BF01889609 doi: 10.1007/BF01889609
    [17] M. F. Jensen, Paley-Wiener type theorems for a differential operator connected with symmetric spaces, Ark. Mat., 10 (1972), 143–162. https://doi.org/10.1007/BF02384806 doi: 10.1007/BF02384806
    [18] M. F. Jensen, T. H. Koornwinder, The convolution structure for Jacobi function expansions, Ark. Mat., 11 (1973), 245–262. https://doi.org/10.1007/BF02388521 doi: 10.1007/BF02388521
    [19] R. L. Frank, E. H. Lieb, R. Seiringer, Stability of relativistic matter with magnetic fields for nuclear charges up to the critical value, Commun. Math. Phys., 275 (2007), 479–489. https://doi.org/10.1007/s00220-007-0307-2 doi: 10.1007/s00220-007-0307-2
    [20] R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 2000.
    [21] T. Kawazoe, J. Liu, Heat kernel and Hardy's theorem for Jacobi transform, Chinese Ann. Math. B, 24 (2003), 359–366. https://doi.org/10.1142/S0252959903000360 doi: 10.1142/S0252959903000360
    [22] T. H. Koornwinder, Jacobi functions and analysis on noncompact semisimple Lie groups, In: Special functions: Group theoretical aspects and applications, Dordrecht: Springer, 1984.
    [23] T. H. Koornwinder, A new proof of a Paley–Wiener type theorem for the Jacobi transform, Ark. Mat., 13 (1975), 145–159. https://doi.org/10.1007/BF02386203 doi: 10.1007/BF02386203
    [24] M. Kwaśnicki, Ten equivalent definitions of the fractional Laplace operator, Fract. Calc. Appl. Anal., 20 (2017), 7–51. https://doi.org/10.1515/fca-2017-0002 doi: 10.1515/fca-2017-0002
    [25] N. Laskin, Fractional Schrödinger equation, Phys. Rev. E, 66 (2002), 7. https://doi.org/10.1103/PhysRevE.66.056108 doi: 10.1103/PhysRevE.66.056108
    [26] E. H. Lieb, H. T. Yau, The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics, Commun. Math. Phys., 112 (1987), 147–174. https://doi.org/10.1007/BF01217684 doi: 10.1007/BF01217684
    [27] E. H. Lieb, H. T. Yau, The stability and instability of relativistic matter, Commun. Math. Phys., 118 (1989), 177–213. https://doi.org/10.1007/BF01218577 doi: 10.1007/BF01218577
    [28] C. A. Monje, Y. Chen, B. M. Vinagre, D. Xue, V. Feliu, Fractional-order systems and controls: Fundamentals and applications, Springer, 2010. https://doi.org/10.1007/978-1-84996-335-0
    [29] I. Petráš, Fractional-order nonlinear systems: Modeling, analysis and simulation, Springer, 2011. https://doi.org/10.1007/978-3-642-18101-6
    [30] F. Riewe, Nonconservative Lagrangian and Hamiltonian mechanics, Phys. Rev. E, 53 (1996), 1890–1899. https://doi.org/10.1103/PhysRevE.53.1890 doi: 10.1103/PhysRevE.53.1890
    [31] F. Riewe, Mechanics with fractional derivatives, Phys. Rev. E, 55 (1997), 3581–3592. https://doi.org/10.1103/PhysRevE.55.3581 doi: 10.1103/PhysRevE.55.3581
    [32] B. Ross, The development of fractional calculus 1695–1900, Hist. Math., 4 (1975), 75–89. https://doi.org/10.1016/0315-0860(77)90039-8 doi: 10.1016/0315-0860(77)90039-8
    [33] N. B. Salem, A. Dachraoui, Pseudo-differential operators associated with the Jacobi differential operator, J. Math. Anal. Appl., 220 (1998), 365–381. https://doi.org/10.1006/jmaa.1997.5891 doi: 10.1006/jmaa.1997.5891
    [34] N. B. Salem, T. Samaali, Hilbert transform and related topics associated with the differential Jacobi operator on $(0, +\infty)$, Positivity, 15 (2011), 221–240. https://doi.org/10.1007/s11117-010-0061-0 doi: 10.1007/s11117-010-0061-0
    [35] P. R. Stinga, J. L. Torrea, Extension problem and Harnack's inequality for some fractional operators, Commun. Part. Diff. Eq., 35 (2010), 2092–2122. https://doi.org/10.1080/03605301003735680 doi: 10.1080/03605301003735680
    [36] K. Trimèche, Generalized wavelets and hypergroups, New York: Gordon & Breach, 1997.
    [37] G. N. Watson, A treatise on the theory of Bessel functions, Cambridge: Cambridge University Press, 1922.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(585) PDF downloads(36) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog