In this paper, we explore the conditions for several geometric structures-specifically, weakly symmetric, weakly Ricci symmetric, almost pseudo symmetric, and almost pseudo Ricci symmetric–on a $ K $-contact manifold equipped with a non-symmetric non-metric connection. We present key theoretical results that characterize these structures in the context of such a connection. To illustrate the applicability of our findings, we construct an explicit example of a 3-dimensional $ K $-contact manifold with a non-symmetric non-metric connection. This example not only confirms the validity of the derived conditions but also offers a concrete model for further investigation in the field. Our results extend the understanding of geometric structures on $ K $-contact manifolds beyond the classical framework of the Levi-Civita connection, paving the way for new directions in differential geometry and mathematical physics.
Citation: Rajesh Kumar, Laltluangkima Chawngthu, Oğuzhan Bahadır, Md Aquib. Geometric aspects of weakly symmetric and almost pseudo symmetric $ K $-contact manifolds admitting a non-symmetric non-metric connection[J]. AIMS Mathematics, 2025, 10(8): 18232-18251. doi: 10.3934/math.2025814
In this paper, we explore the conditions for several geometric structures-specifically, weakly symmetric, weakly Ricci symmetric, almost pseudo symmetric, and almost pseudo Ricci symmetric–on a $ K $-contact manifold equipped with a non-symmetric non-metric connection. We present key theoretical results that characterize these structures in the context of such a connection. To illustrate the applicability of our findings, we construct an explicit example of a 3-dimensional $ K $-contact manifold with a non-symmetric non-metric connection. This example not only confirms the validity of the derived conditions but also offers a concrete model for further investigation in the field. Our results extend the understanding of geometric structures on $ K $-contact manifolds beyond the classical framework of the Levi-Civita connection, paving the way for new directions in differential geometry and mathematical physics.
| [1] | N. S. Agashe, M. R. Chafle, A semi-symmetric non-metric connection in a Riemannian manifold, Indian J. Pure Appl. Math., 23 (1992), 399–409. |
| [2] |
S. Beyendi, Some results on $\alpha$-cosymplectic manifolds admitting a non-symmetric non-metric connection, J. Eng. Technol. Appl. Sci., 7 (2022), 207–218. https://doi.org/10.30931/jetas.1185721 doi: 10.30931/jetas.1185721
|
| [3] | D. E. Blair, Contact manifolds in Riemannian geometry, Berlin: Springer Verlag, 1976. |
| [4] |
S. K. Chaubey, A. C. Pandey, Some properties of a semisymmetric non-metric connection on a Sasakian Manifold, Int. J. Contemp. Math. Science, 8 (2013), 789–799. http://doi.org/10.12988/ijcms.2013.28172 doi: 10.12988/ijcms.2013.28172
|
| [5] | S. K. Chaubey, On semisymmetric non-metric connection, Prog. of Math., 41-42 (2007), 11–20. |
| [6] | M. C. Chaki, On pseudo Ricci symmetric manifolds, Bulg. J. Phys., 15 (1988), 526–531. |
| [7] | M. C. Chaki, T. Kawaguchi, On almost pseudo Ricci symmetric manifolds, Tensor. New series, 68 (2007), 10–14. |
| [8] | S. K. Chaubey, Almost contact metric manifolds admitting semisymmetric non-metric connection, Bull. Math. Anal. Appl., 3 (2011), 552–560. |
| [9] |
S. K. Chaubey, R. H. Ojha, On a semi-symmetric non-metric connection, Filomat, 26 (2012), 269–275. https://doi.org/10.2298/FIL1202269C doi: 10.2298/FIL1202269C
|
| [10] | U. C. De, A. K. Gazi, On almost pseudo symmetric manifolds, Ann. Univ. Sci. Budap., 51 (2008), 53–68. |
| [11] | U. C. De, A. A. Shaikh, Complex manifolds and contact manifolds, Oxford: Alpha Science International, 2009. |
| [12] | U. C. De, M. M. Tripathi, Ricci-tensor in 3-dimensional trans-Sasakian manifolds, Kyungpook Math. J., 2 (2005), 247–255. |
| [13] |
A. Friedmann, J. A. Schouten, $\ddot{U}ber$ die Geometrie der halbsymmetrischen $\ddot{U}bertragung$, Math. Z., 21 (1924), 211–223. https://doi.org/10.1007/BF01187468 doi: 10.1007/BF01187468
|
| [14] |
H. A. Hayden, Sub-spaces of a space with torsion, Proc. London Math. Soc., 34 (1932), 27–50. https://doi.org/10.1112/plms/s2-34.1.27 doi: 10.1112/plms/s2-34.1.27
|
| [15] | J. S. Kim, R. Prasad, M. M. Tripathi, On generalized Ricci recurrent trans-Sasakian manifolds, J. Korean Math. Soc., 39 (2002), 953–961. |
| [16] | R. Kumar, L. Colney, M. N. I. Khan, Proposed theorems on the lifts of Kenmotsu manifolds admitting a non-symmetric non-metric connection (NSNMC) in the tangent bundle, Symmetry, 15 (2023), 2037. |
| [17] | J. A. Oubina, New classes of almost contact metric structures, Publ. Math. Debrecen., 32 (1985), 187–193. |
| [18] | E. Pak, On the pseudo-Riemannian spaces, J. Korean Math. Soc., 6 (1969), 23–31. |
| [19] | Pankaj, S. K. Chaubey, R. Prasad, Trans-Sasakian Manifolds with respect to a non-symmetric non metric connection, Global J. Adv. Res. Classical Modern Geomet., 7 (2018), 1–10. |
| [20] | Pankaj, S. K. Chaubey, R. Prasad, Sasakian manifolds admitting a non-symmetric non-metric connection, Palest. J. Math., 9 (2020), 698–710. |
| [21] | R. Prasad, Pankaj, M. M. Tripathi, S. S. Shukla, On some special type of trans-Sasakian Manifolds, Riv. Mat. Univ. Parma., 2 (2009), 1–17. |
| [22] |
S. Sasaki, On differentiable manifolds with certain structure which are closed related to an almost contact structure, Tohoku Math. J., 12 (1960), 459–476. https://doi.org/10.2748/tmj/1178244407 doi: 10.2748/tmj/1178244407
|
| [23] | S. Sasaki, Lecture note on almost contact manifolds, Part I., Tohoku: Tohoku University, 1965. |
| [24] | A. Singh, C. K. Mishra, L. Kumar, S. Patel, Characterization of Kenmotsu manifolds admitting a non-symmetric non-metric connection, J. Int. Acad. Phys. Sci., 26 (2022), 265–274. |
| [25] | L. Tamássy, T. Q. Binh, On weakly symmetric and weakly projective symmetric Riemannian manifolds, Colloq. Math. Soc. J. Bolyai, 50 (1989), 663–670. |
| [26] | L. Tamássy, T. Q. Binh, On weak symmetries of Einstein and Sasakian manifolds, Tensor. New Series, 53 (1993), 140–148. |
| [27] | K. Yano, Concircular geometry Ⅰ. Concircular transformations, Proc. Imp. Acad. Tokyo, 16 (1940), 195–200. |