Research article Topical Sections

The dynamical behavior of a rational difference equation through KAM theory

  • Received: 16 June 2025 Revised: 30 July 2025 Accepted: 05 August 2025 Published: 13 August 2025
  • MSC : 39A30

  • In this study, we employ the Kolmogorov-Arnold-Moser (KAM) theory to investigate the stability of solutions for the following difference equation:

    $ \begin{equation*} \begin{aligned} \zeta_{n+1}& = \frac{1}{\zeta_{n-1}-\beta \zeta_n\zeta_{n-1}}, n = 0, 1, ... \end{aligned} \end{equation*} $

    In this context, the parameter $ \beta $ and the initial conditions $ \zeta_{-1}, \zeta_{0} $ are positive. We construct a novel logarithmic transformation that satisfies the area-preserving mapping to demonstrate the existence of a positive elliptic equilibrium and examine the stability. Then, the Birkhoff normal form locally simplifies the nonlinear system into a higher-order standard form near the equilibrium or periodic orbits. Consequently, we apply the KAM theory to prove that there exist numerous invariant closed curves in the smooth invariant region of any non-degenerate elliptic fixed point. Additionally, we conduct multiple numerical simulations to support our research findings using the Matlab software.

    Citation: Ruiqi Yan, Qianhong Zhang. The dynamical behavior of a rational difference equation through KAM theory[J]. AIMS Mathematics, 2025, 10(8): 18252-18267. doi: 10.3934/math.2025815

    Related Papers:

  • In this study, we employ the Kolmogorov-Arnold-Moser (KAM) theory to investigate the stability of solutions for the following difference equation:

    $ \begin{equation*} \begin{aligned} \zeta_{n+1}& = \frac{1}{\zeta_{n-1}-\beta \zeta_n\zeta_{n-1}}, n = 0, 1, ... \end{aligned} \end{equation*} $

    In this context, the parameter $ \beta $ and the initial conditions $ \zeta_{-1}, \zeta_{0} $ are positive. We construct a novel logarithmic transformation that satisfies the area-preserving mapping to demonstrate the existence of a positive elliptic equilibrium and examine the stability. Then, the Birkhoff normal form locally simplifies the nonlinear system into a higher-order standard form near the equilibrium or periodic orbits. Consequently, we apply the KAM theory to prove that there exist numerous invariant closed curves in the smooth invariant region of any non-degenerate elliptic fixed point. Additionally, we conduct multiple numerical simulations to support our research findings using the Matlab software.



    加载中


    [1] J. Wang, X. Jiang, H. Zhang, X. Yang, A new fourth-order nonlinear difference scheme for the nonlinear fourth-order generalized Burgers-type equation, J. Appl. Math. Comput., in press. https://doi.org/10.1007/s12190-025-02467-3
    [2] J. Zhang, X. Yang, S. Wang, The ADI difference and extrapolation scheme for high-dimensional variable coefficient evolution equations, Electron. Res. Arch., 33 (2025), 3305–3327. https://doi.org/10.3934/era.2025146 doi: 10.3934/era.2025146
    [3] J. Wang, X. Jiang, H. Zhang, A BDF3 and new nonlinear fourth-order difference scheme for the generalized viscous Burgers' equation, Appl. Math. Lett., 151 (2024), 109002. https://doi.org/10.1016/j.aml.2024.109002 doi: 10.1016/j.aml.2024.109002
    [4] X. Yang, Z. Zhang, Analysis of a new NFV scheme preserving DMP for two-dimensional sub-diffusion equation on distorted meshes, J. Sci. Comput., 99 (2024), 80. https://doi.org/10.1007/s10915-024-02511-7 doi: 10.1007/s10915-024-02511-7
    [5] X. Yang, Z. Zhang, Superconvergence analysis of a robust orthogonal Gauss collocation method for 2D fourth-order subdiffusion equations, J. Sci. Comput., 100 (2024), 62. https://doi.org/10.1007/s10915-024-02616-z doi: 10.1007/s10915-024-02616-z
    [6] Y. Shi, X. Yang, The pointwise error estimate of a new energy-preserving nonlinear difference method for supergeneralized viscous Burgers' equation, Comp. Appl. Math., 44 (2025), 257. https://doi.org/10.1007/s40314-025-03222-x doi: 10.1007/s40314-025-03222-x
    [7] E. Martínez, J. Vidarte, J. Zapata, Periodic orbits and KAM tori of a particle around a homogeneous elongated body, Dynam. Syst., 40 (2025), 91–101. https://doi.org/10.1080/14689367.2024.2426585 doi: 10.1080/14689367.2024.2426585
    [8] X. Niu, K. Wang, Y. Li, Quasi-periodic swing via weak KAM theory, Physica D, 474 (2025), 134559. https://doi.org/10.1016/j.physd.2025.134559 doi: 10.1016/j.physd.2025.134559
    [9] A. Celletti, I. De Blasi, S. Di Ruzza, Perturbative methods and synchronous resonances in Celestial mechanics, Appl. Math. Model., 143 (2025), 116040. https://doi.org/10.1016/j.apm.2025.116040 doi: 10.1016/j.apm.2025.116040
    [10] K. Senada, E. Pilav, Stability of May's host-parasitoid model with variable stocking upon parasitoids, Int. J. Biomath., 15 (2022), 2150072. https://doi.org/10.1142/S1793524521500728 doi: 10.1142/S1793524521500728
    [11] W. Jamieson, On the global behaviour of May's host-parasitoid model, J. Differ. Equ. Appl., 25 (2019), 583–596. https://doi.org/10.1080/10236198.2019.1613387 doi: 10.1080/10236198.2019.1613387
    [12] C. Lautenschlager, N. Tzempelikos, Towards an integration of corporate foresight in key account management, Ind. Market. Manag., 120 (2024), 90–99. https://doi.org/10.1016/j.indmarman.2024.05.009 doi: 10.1016/j.indmarman.2024.05.009
    [13] M. Gidea, J. Meiss, I. Ugarcovici, H. Weiss, Applications of KAM theory to population dynamics, J. Biol. Dynam., 5 (2011), 44–63. https://doi.org/10.1080/17513758.2010.488301 doi: 10.1080/17513758.2010.488301
    [14] M. Garić-Demirović, M. Nurkanović, Z. Nurkanović, Stability, periodicity and symmetries of certain second-order fractional difference equation with quadratic terms via KAM theory, Math. Method. Appl. Sci., 40 (2017), 306–318. https://doi.org/10.1002/mma.4000 doi: 10.1002/mma.4000
    [15] M. Kulenović, Invariants and related Liapunov functions for difference equations, Appl. Math. Lett., 13 (2000), 1–8. https://doi.org/10.1016/S0893-9659(00)00068-9 doi: 10.1016/S0893-9659(00)00068-9
    [16] A. Cima, A. Gasull, V. Mañosa, Non-integrability of measure preserving maps via Lie symmetries, J. Differ. Equations, 259 (2015), 5115–5136. https://doi.org/10.1016/j.jde.2015.06.019 doi: 10.1016/j.jde.2015.06.019
    [17] T. Ibrahim, Z. Nurkanović, Kolmogorov-Arnold-Moser theory and symmetries for a polynomial quadratic second order difference equation, Mathematics, 7 (2019), 790. https://doi.org/10.3390/math7090790 doi: 10.3390/math7090790
    [18] E. Dennete, M. Kulenovic, E. Pilav, Birkhoff normal forms, KAM theory and time reversal symmetry for certain rational map, Mathematics, 4 (2016), 20. https://doi.org/10.3390/math4010020 doi: 10.3390/math4010020
    [19] M. Kulenović, Z. Nurkanović, E. Pilav, Birkhoff normal forms and KAM theory for Gumowski-Mira equation, Sci. World J., 2014 (2014), 819290. https://doi.org/10.1155/2014/819290 doi: 10.1155/2014/819290
    [20] M. Kulenovic, O. Merino, Discrete dynamical systems and difference equations with mathematica, New York: Chapman and Hall/CRC, 2002. https://doi.org/10.1201/9781420035353
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(580) PDF downloads(30) Cited by(0)

Article outline

Figures and Tables

Figures(8)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog