Research article Topical Sections

Optimality and scalarization for approximate Benson proper efficient solutions in vector equilibrium problems

  • Received: 11 April 2025 Revised: 06 July 2025 Accepted: 24 July 2025 Published: 13 August 2025
  • MSC : 90C05, 90C30, 90C31

  • This paper examines the optimality and scalarization theorems for approximate quasi-Benson proper efficient solutions in constrained vector equilibrium problems. The optimality conditions are established based on the generalized convexity and convex separation theorems. Additionally, two scalarization theorems are developed by combining the cone scalarization function with the properties of generating cones. The proposed definitions and conclusions are supported by specific numerical examples.

    Citation: Shan Cai, Shengxin Hua, Xiaoping Li. Optimality and scalarization for approximate Benson proper efficient solutions in vector equilibrium problems[J]. AIMS Mathematics, 2025, 10(8): 18216-18231. doi: 10.3934/math.2025813

    Related Papers:

  • This paper examines the optimality and scalarization theorems for approximate quasi-Benson proper efficient solutions in constrained vector equilibrium problems. The optimality conditions are established based on the generalized convexity and convex separation theorems. Additionally, two scalarization theorems are developed by combining the cone scalarization function with the properties of generating cones. The proposed definitions and conclusions are supported by specific numerical examples.



    加载中


    [1] E. Blum, From optimization and variational inequalities to equilibrium problems, Math. Student, 63 (1994), 123–145.
    [2] Q. Ansari, E. Köbis, J. Yao, Vector variational inequalities and vector optimization: theory and applications, Cham: Springer, 2018. https://doi.org/10.1007/978-3-319-63049-6
    [3] F. Giannessi, Vector variational inequalities and vector equilibria: mathematical theories, New York: Springer, 2000. https://doi.org/10.1007/978-1-4613-0299-5
    [4] G. Kassay, V. Rădulescu, Equilibrium problems and applications, London: Academic Press, 2019. https://doi.org/10.1016/C2015-0-06685-0
    [5] S. Dempe, V. Kalashnikov, Optimization with multivalued mappings: theory, applications and algorithms, New York: Springer, 2006. https://doi.org/10.1007/0-387-34221-4
    [6] I. Konnov, J. Yao, Existence of solutions for generalized vector equilibrium problems, J. Math. Anal. Appl., 233 (1999), 328–335. https://doi.org/10.1006/jmaa.1999.6312 doi: 10.1006/jmaa.1999.6312
    [7] F. Flores-Bazan, F. Flores-Bazan, Vector equilibrium problems under asymptotic analysis, J. Global Optim., 26 (2003), 141–166. https://doi.org/10.1023/A:1023048928834 doi: 10.1023/A:1023048928834
    [8] Q. Ansari, I. Konnov, J. Yao, Existence of a solution and variational principles for vector equilibrium problems, J. Optimiz. Theory Appl., 110 (2001), 481–492. https://doi.org/10.1023/A:1017581009670 doi: 10.1023/A:1017581009670
    [9] Y. Feng, Q. Qiu, Optimality conditions for vector equilibrium problems with constraint in Banach spaces, Optim. Lett., 8 (2014), 1931–1944. https://doi.org/10.1007/s11590-013-0695-5 doi: 10.1007/s11590-013-0695-5
    [10] X. Gong, Scalarization and optimality conditions for vector equilibrium problems, Nonlinear Anal.-Theor., 73 (2010), 3598–3612. https://doi.org/10.1016/j.na.2010.07.041 doi: 10.1016/j.na.2010.07.041
    [11] Q. Ansari, Vectorial form of Ekeland-type variational principle with applications to vector equilibrium problems and fixed point theory, J. Math. Anal. Appl., 334 (2007), 561–575. https://doi.org/10.1016/j.jmaa.2006.12.076 doi: 10.1016/j.jmaa.2006.12.076
    [12] M. Bianchi, G. Kassay, R. Pini, Ekeland's principle for vector equilibrium problems, Nonlinear Anal.-Theor., 66 (2007), 1454–1464. https://doi.org/10.1016/j.na.2006.02.003 doi: 10.1016/j.na.2006.02.003
    [13] G. Chen, W. Rong, Characterizations of the Benson proper efficiency for nonconvex vector optimization, J. Optimiz. Theory Appl., 98 (1998), 365–384. https://doi.org/10.1023/A:1022689517921 doi: 10.1023/A:1022689517921
    [14] X. Yang, D. Li, S. Wang, Near-subconvexlikeness in vector optimization with set-valued functions, J. Optimiz. Theory Appl., 110 (2001), 413–427. https://doi.org/10.1023/A:1017535631418 doi: 10.1023/A:1017535631418
    [15] Q. Qiu, Optimality conditions of globally efficient solution for vector equilibrium problems with generalized convexity, J. Inequal. Appl., 2009 (2009), 898213. https://doi.org/10.1155/2009/898213 doi: 10.1155/2009/898213
    [16] X. Long, Y. Huang, Z. Peng, Optimality conditions for the Henig efficient solution of vector equilibrium problems with constraints, Optim. Lett., 5 (2011), 717–728. https://doi.org/10.1007/s11590-010-0241-7 doi: 10.1007/s11590-010-0241-7
    [17] Q. Qiu, Optimality conditions for vector equilibrium problems with constraints, J. Ind. Manag. Optim., 5 (2009), 783–790. https://doi.org/10.3934/jimo.2009.5.783 doi: 10.3934/jimo.2009.5.783
    [18] X. Gong, A characterization of super efficiency in vector equilibrium problems, Optim. Lett., 5 (2011), 683–690. https://doi.org/10.1007/s11590-010-0234-6 doi: 10.1007/s11590-010-0234-6
    [19] R. Gasimov, Characterization of the Benson proper efficiency and scalarization in nonconvex vector optimization, In: Multiple criteria decision making in the new millennium, Berlin: Springer, 2001,189–198. https://doi.org/10.1007/978-3-642-56680-6_17
    [20] E. Bishop, R. Phelps, The support functionals of a convex set, In: Selected papers of Errett Bishop, Singapore: World Scientific, 1986,293–301. https://doi.org/10.1142/9789814415514_0020
    [21] C. Chen, X. Zuo, F. Lu, S. Li, Vector equilibrium problems under improvement sets and linear scalarization with stability applications, Optim. Method. Softw., 31 (2016), 1240–1257. https://doi.org/10.1080/10556788.2016.1200043 doi: 10.1080/10556788.2016.1200043
    [22] Y. Han, N. Huang, Some characterizations of the approximate solutions to generalized vector equilibrium problems, J. Ind. Manag. Optim., 12 (2016), 1135–1151. https://doi.org/10.3934/jimo.2016.12.1135 doi: 10.3934/jimo.2016.12.1135
    [23] J. Ródenas Pedregosa, Caracterización de soluciones de problemas de equilibrio vectoriales, Ph.D Thesis, Universidad Nacional de Educación a Distancia, 2018.
    [24] Q. Qiu, X. Yang, Scalarization of approximate solution for vector equilibrium problems, J. Ind. Manag. Optim., 9 (2013), 143–151. https://doi.org/10.3934/jimo.2013.9.143 doi: 10.3934/jimo.2013.9.143
    [25] F. Clarke, Optimization and nonsmooth analysis, Philadelphia: Society for Industrial and Applied Mathematics, 1990. https://doi.org/10.1137/1.9781611971309
    [26] R. Tyrrell Rockafellar, R. Wets, Variational analysis, Berlin: Springer, 2009. https://doi.org/10.1007/978-3-642-02431-3
    [27] K. Miettinen, Nonlinear multiobjective optimization, New York: Springer, 1998. https://doi.org/10.1007/978-1-4615-5563-6
    [28] J. Jahn, Mathematical vector optimization in partially order linear spaces, Frankfurt: Verlag Peter Lang, 1986.
    [29] B. Soleimani, C. Tammer, Concepts for approximate solutions of vector optimization problems with variable order structures, Vietnam J. Math., 42 (2014), 543–566. https://doi.org/10.1007/s10013-014-0103-1 doi: 10.1007/s10013-014-0103-1
    [30] R. Kasimbeyli, A conic scalarization method in multi-objective optimization, J. Glob. Optim., 56 (2013), 279–297. https://doi.org/10.1007/s10898-011-9789-8 doi: 10.1007/s10898-011-9789-8
    [31] R. Kasimbeyli, A nonlinear cone separation theorem and scalarization in nonconvex vector optimization, SIAM J. Optimiz., 20 (2010), 1591–1619. https://doi.org/10.1137/070694089 doi: 10.1137/070694089
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(435) PDF downloads(23) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog