This study investigated the statistical convergence of fractal-generating set sequences, motivated by the observation that natural fractals, influenced by external biological, chemical, or physical factors, rarely exhibit strict classical convergence. Instead, their limiting behavior often aligns with statistical patterns. We formalized the concept of statistical convergence for compact subsets of $ \mathbb{R}^n $, introduced the notion of statistical Cauchy sequences, and established their sufficiency for statistical convergence—mirroring the classical relationship. Several illustrative examples and graphical simulations, including variants of the Sierpiński triangle and Koch snowflake, highlight the distinction between classical and statistical convergence. The proposed framework provides a more realistic and robust approach to understanding fractal structures in both theoretical and applied contexts.
Citation: Jun-Jie Quan, Selim Çetin, Ömer Kişi, Mehmet Gürdal, Qing-Bo Cai. On statistical convergence in fractal analysis[J]. AIMS Mathematics, 2025, 10(8): 18197-18215. doi: 10.3934/math.2025812
This study investigated the statistical convergence of fractal-generating set sequences, motivated by the observation that natural fractals, influenced by external biological, chemical, or physical factors, rarely exhibit strict classical convergence. Instead, their limiting behavior often aligns with statistical patterns. We formalized the concept of statistical convergence for compact subsets of $ \mathbb{R}^n $, introduced the notion of statistical Cauchy sequences, and established their sufficiency for statistical convergence—mirroring the classical relationship. Several illustrative examples and graphical simulations, including variants of the Sierpiński triangle and Koch snowflake, highlight the distinction between classical and statistical convergence. The proposed framework provides a more realistic and robust approach to understanding fractal structures in both theoretical and applied contexts.
| [1] |
A. Husain, M. N. Nanda, M. S. Chowdary, M. Sajid, Fractals: An eclectic survey, part-Ⅰ, Fractal Fract., 6 (2022), 89. https://doi.org/10.3390/fractalfract6020089 doi: 10.3390/fractalfract6020089
|
| [2] |
Y. Kao, Y. Cao, Y. Chen, Projective synchronization for uncertain fractional reaction-diffusion systems via adaptive sliding mode control based on finite-time scheme, IEEE Trans. Neural Networks Learn. Syst., 35 (2024), 15638–15646. https://doi.org/10.1109/TNNLS.2023.3288849 doi: 10.1109/TNNLS.2023.3288849
|
| [3] | B. B. Mandelbrot, The fractal geometry of nature, San Francisco: W. H. Freeman and Company, 1982. |
| [4] |
B. B. Mandelbrot, How long is the coast of Britain? Statistical self-similarity and fractional dimension, Science, 156 (1967), 636–638. https://doi.org/10.1126/science.156.3775.636 doi: 10.1126/science.156.3775.636
|
| [5] |
B. B. Mandelbrot, Stochastic models for the Earth's relief, the shape and the fractal dimension of the coastlines, and the number-area rule for islands, Proc. Natl. Acad. Sci., 72 (1975), 3825–3828. https://doi.org/10.1073/pnas.72.10.3825 doi: 10.1073/pnas.72.10.3825
|
| [6] | T. Vicsek, Fractal growth phenomena, 2Eds., World Scientific, 1992. https://doi.org/10.1142/1407 |
| [7] | M. F. Barnsley, Fractals everywhere, 2Eds., Academic Press, 1993. https://doi.org/10.1016/C2013-0-10335-2 |
| [8] | H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241–244. |
| [9] | H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2 (1951), 73–74. |
| [10] | M. Gürdal, U. Yamancı, Statistical convergence and some questions of operator theory, Dynam. Syst. Appl., 24 (2015), 305–311. |
| [11] |
A. A. Nabiev, E. Savaş, M. Gürdal, Statistically localized sequences in metric spaces, J. Appl. Anal. Comput., 9 (2019), 739–746. https://doi.org/10.11948/2156-907X.20180157 doi: 10.11948/2156-907X.20180157
|
| [12] | T. Salat, On statistically convergent sequences of real numbers, Math. Slovaca, 30 (1980), 139–150. |
| [13] |
A. Sahiner, M. Gürdal, T. Yigit, Ideal convergence characterization of the completion of linear n-normed spaces, Comput. Math. Appl., 61 (2011), 683–689. https://doi.org/10.1016/j.camwa.2010.12.015 doi: 10.1016/j.camwa.2010.12.015
|
| [14] | E. Savaş, M. Gürdal, $\mathfrak{I}$-statistical convergence in probabilistic normed spaces, U.P.B. Sci. Bull. Ser. A, 77 (2015), 195–204. |
| [15] |
E. Savaş, Ö. Kisi, M. Gürdal, On statistical convergence in credibility space, Numerical Funct. Anal. Optim., 43 (2022), 987–1008. https://doi.org/10.1080/01630563.2022.2070205 doi: 10.1080/01630563.2022.2070205
|
| [16] |
D. Georgiou, A. Megaritis, G. Prinos, F. Sereti, On statistical convergence of seqeunces of closed sets in metric spaces, Math. Slovaca, 71 (2021), 409–422. https://doi.org/10.1515/ms-2017-0477 doi: 10.1515/ms-2017-0477
|
| [17] | F. Nuray, B. E. Rhoades, Statistical convergence of sequences of sets, Fasc. Math., 49 (2012), 87–99. |
| [18] |
Ö. Talo, Y. Sever, F. Başar, On statistically convergent sequences of closed sets, Filomat, 30 (2016), 1497–1509. https://doi.org/10.2298/FIL1606497T doi: 10.2298/FIL1606497T
|
| [19] | J. A. Fridy, On statistical convergence, Analysis, 5 (1985), 301–313. |
| [20] | I. A. Demirci, Ö. Kisi, M. Gürdal, Lacunary A-statistical convergence of fuzzy variable sequences via Orlicz function, Maejo Int. J. Sci. Technol., 18 (2024), 88–100. |
| [21] | E. Bayram, A. Aydın, M. Küçükaslan, Weighted statistical rough convergence in normed spaces, Maejo Int. J. Sci. Technol., 18 (2024), 178–192. |
| [22] | F. Hausdorff, Set theory, New York: Chelsea Publishing Company, 1957. |
| [23] | K. Falconer, Fractal geometry: Mathematical foundations and applications, Wiley, 2013. |
| [24] |
J. Wang, L. Qiu, Y. Liang, F. Wang, A spatio-temporal radial basis function collocation method based on Hausdorff fractal distance for Hausdorff derivative heat conduction equations in three-dimensional anisotropic materials, Appl. Math. Comput., 502 (2025), 129501. https://doi.org/10.1016/j.amc.2025.129501 doi: 10.1016/j.amc.2025.129501
|
| [25] | J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J., 30 (1981), 713–747. |
| [26] | H. O. Peitgen, H. Jürgens, D. Saupe, Chaos and fractals: New frontiers of science, 2Eds., New York: Springer, 2004. https://doi.org/10.1007/b97624 |
| [27] | H. V. Koch, Sur une courbe continue sans tangente, obtenue par une construction géométrique élémentaire, Ark. Mat., 1 (1904), 681–704. |
| [28] |
D. Georgiou, G. Prinos, F. Sereti, Statistical and ideal convergences in topology, Mathematics, 11 (2023), 663. https://doi.org/10.3390/math11030663 doi: 10.3390/math11030663
|
| [29] | E. N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci., 20 (1963), 130–141. |
| [30] | N. Akhmediev, A. Ankiewicz, Dissipative solitons: From optics to biology and medicine, Berlin, Heidelberg: Springer, 2008. https://doi.org/10.1007/978-3-540-78217-9 |
| [31] | A. Lasota, M. C. Mackey, Chaos, fractals, and noise: Stochastic aspects of dynamics, 2 Eds., New York: Springer, 1994. https://doi.org/10.1007/978-1-4612-4286-4 |