This article uses Hirota's bilinear method (HBM) and appropriate transformations to investigate several lump solution forms in a cascaded system with spatiotemporal dispersion (STD) and Kerr law nonlinearity (KLN). The vector-coupled nonlinear Schrödinger equation is the mathematical model that describes how different solitons propagate through a cascaded system. Using the positive quadratic assumption in bilinear form, we evaluate lump solutions. By using the single and double exponential ansatz in bilinear form, respectively, we additionally investigate lump single-strip and double-strip soliton interactions. Furthermore, by using trigonometric and hyperbolic functions, respectively, we are able to find lump periodic and rogue wave solutions. Additionally, we discuss and illustrate the geometry of our solutions in multiple dimensions, such as contour plots and 3D. We also compute the stability of our solutions.
Citation: Sarfaraz Ahmed, Atef F. Hashem, Syed T. R. Rizvi, Aly R. Seadawy. Characterizing the physical and dynamical properties of lump, rogue waves and their interactions for a cascaded system with spatio-temporal dispersion and Kerr nonlinearity[J]. AIMS Mathematics, 2025, 10(7): 16498-16525. doi: 10.3934/math.2025739
This article uses Hirota's bilinear method (HBM) and appropriate transformations to investigate several lump solution forms in a cascaded system with spatiotemporal dispersion (STD) and Kerr law nonlinearity (KLN). The vector-coupled nonlinear Schrödinger equation is the mathematical model that describes how different solitons propagate through a cascaded system. Using the positive quadratic assumption in bilinear form, we evaluate lump solutions. By using the single and double exponential ansatz in bilinear form, respectively, we additionally investigate lump single-strip and double-strip soliton interactions. Furthermore, by using trigonometric and hyperbolic functions, respectively, we are able to find lump periodic and rogue wave solutions. Additionally, we discuss and illustrate the geometry of our solutions in multiple dimensions, such as contour plots and 3D. We also compute the stability of our solutions.
| [1] |
W. J. Liu, B. Tian, H. Q. Zhang, L. L. Li, Y. S. Xue, Soliton interaction in the higher-order nonlinear Schrödinger equation investigated with Hirota's bilinear method, Phys. Rev. E, 77 (2008), 066605. https://doi.org/10.1103/PhysRevE.77.066605 doi: 10.1103/PhysRevE.77.066605
|
| [2] |
Z. D. Li, Q. Y. Li, X. H. Hu, Z. X. Zheng, Y. Sun, Hirota method for the nonlinear Schrodinger equation with an arbitrary linear time-dependent potential, Ann. Phys., 332 (2007), 2545–2553. https://doi.org/10.1016/j.aop.2006.11.012 doi: 10.1016/j.aop.2006.11.012
|
| [3] |
Y. Li, S. F. Tian, J. J. Yang, Riemann-Hilbert problem and interactions of solitons in the-component nonlinear Schrödinger equations, Stud. Appl. Math., 148 (2022), 577–605. https://doi.org/10.1111/sapm.12450 doi: 10.1111/sapm.12450
|
| [4] |
Z. Q. Li, S. F. Tian, J. J. Yang, On the soliton resolution and the asymptotic stability of N-soliton solution for the Wadati-Konno-Ichikawa equation with finite density initial data in space-time solitonic regions, Adv. Math., 409 (2022), 108639. https://doi.org/10.1016/j.aim.2022.108639 doi: 10.1016/j.aim.2022.108639
|
| [5] |
M. A. Banaja, A. A. Al Qarni, H. O. Bakodah, Q. Zhou, S. P. Moshokoa, A. Biswas, The investigate of optical solitons in cascaded system by improved adomian decomposition scheme, Optik, 130 (2017), 1107. https://doi.org/10.1016/j.ijleo.2016.11.125 doi: 10.1016/j.ijleo.2016.11.125
|
| [6] |
S. T. Rizvi, A. R. Seadawy, S. Ahmed, K. Ali, Einstein's vacuum field equation: Lumps, manifold periodic, generalized breathers, interactions and rogue wave solutions, Opt. Quant. Electron., 55 (2023), 181. https://doi.org/10.1007/s11082-022-04451-8 doi: 10.1007/s11082-022-04451-8
|
| [7] |
A. R. Seadawy, S. T. Rizvi, S. Ahmed, T. Batool, Propagation of W-shaped and M-shaped solitons with multi-peak interaction for ultrashort light pulse in fibers, Opt. Quant. Electron., 55 (2023), 221. https://doi.org/10.1007/s11082-022-04478-x doi: 10.1007/s11082-022-04478-x
|
| [8] |
A. R. Seadawy, S. Ahmed, S. T. Rizvi, K. Nazar, Applications for mixed Chen-Lee-Liu derivative nonlinear Schrödinger equation in water wave flumes and optical fibers, Opt. Quant. Electron., 55 (2023), 34. https://doi.org/10.1007/s11082-022-04300-8 doi: 10.1007/s11082-022-04300-8
|
| [9] |
A. R. Seaway, S. T. Rizvi, A. Ahmad, S. Ahmed, Multiwave, rogue wave, periodic wave, periodic cross-lump wave, periodic cross-kink wave, lump soliton, breather lump, homoclinic breather, periodic cross-kink, M-shaped rational solutions and their interactions for the Degasperis-Procesi equation, Int. J. Mod. Phys. B, 13 (2023), 2350172. https://doi.org/10.1142/S0217979223501722 doi: 10.1142/S0217979223501722
|
| [10] |
A. R. Seadawy, S. T. Rizvi, S. Ahmed, A. Ahmad, Study of dissipative NLSE for dark and bright, multiwave, breather and M-shaped solitons along with some interactions in monochromatic waves, Opt. Quant. Electron., 54 (2022), 782. https://doi.org/10.1007/s11082-022-04198-2 doi: 10.1007/s11082-022-04198-2
|
| [11] |
S. Ahmed, A. R. Seadawy, S. T. Rizvi, Study of breathers, rogue waves and lump solutions for the nonlinear chains of atoms, Opt. Quant. Electron., 54 (2022), 320. https://doi.org/10.1007/s11082-022-03732-6 doi: 10.1007/s11082-022-03732-6
|
| [12] |
K. Ali, A. R. Seadawy, S. Ahmed, S. T. Rizvi, Discussion on rational solutions for Nematicons in liquid crystals with Kerr Law, Chaos. Soliton. Fract., 160 (2022), 112218. https://doi.org/10.1016/j.chaos.2022.112218 doi: 10.1016/j.chaos.2022.112218
|
| [13] |
A. R. Seadawy, S. T. Rizvi, S. Ahmed, Weierstrass and Jacobi elliptic, bell and kink type, lumps, Ma and Kuznetsov breathers with rogue wave solutions to the dissipative nonlinear Schrödinger equation, Chaos. Soliton. Fract., 160 (2022), 112258. https://doi.org/10.1016/j.chaos.2022.112258 doi: 10.1016/j.chaos.2022.112258
|
| [14] |
A. R. Seadawy, S. Ahmed, S. T. Rizvi, K. Ali, Various forms of lumps and interaction solutions to generalized Vakhnenko Parkes equation arising from high-frequency wave propagation in electromagnetic physics, J. Geom. Phys., 176 (2022), 104507. https://doi.org/10.1016/j.geomphys.2022.104507 doi: 10.1016/j.geomphys.2022.104507
|
| [15] |
A. R. Seadawy, S. Ahmed, S. T. Rizvi, K. Ali, Lumps, breathers, interactions and rogue wave solutions for a stochastic gene evolution in double chain deoxyribonucleic acid system, Chaos. Soliton. Fract., 161 (2022), 112307. https://doi.org/10.1016/j.chaos.2022.112307 doi: 10.1016/j.chaos.2022.112307
|
| [16] |
A. R. Seadawy, S. T. Rizvi, S. Ahmed, Multiple lump, generalized breathers, Akhmediev breather, manifold periodic and rogue wave solutions for generalized Fitzhugh-Nagumo equation: Applications in nuclear reactor theory, Chaos. Soliton. Fract., 161 (2022), 112326. https://doi.org/10.1016/j.chaos.2022.112326 doi: 10.1016/j.chaos.2022.112326
|
| [17] | A. R. Seadawy, S. T. Rizvi, S. Ahmed, M. Younas, Encyclopedia of complexity and systems science, In: Applications of lump and interaction soliton solutions to the model of liquid crystals and nerve fibers, Berlin, Heidelberg: Springer, 2022, 1–20. |
| [18] |
A. Bashir, A. R. Seadawy, S. Ahmed, S. T. Rizvi, The Weierstrass and Jacobi elliptic solutions along with multiwave, homoclinic breather, kink-periodic-cross rational and other solitary wave solutions to Fornberg Whitham equation, Chaos. Soliton. Fract., 163 (2022), 112538. https://doi.org/10.1016/j.chaos.2022.112538 doi: 10.1016/j.chaos.2022.112538
|
| [19] |
L. P. Aarts, P. V. D. Veer, Neural network method for solving partial differential equations, Neural Process. Lett., 14 (2001), 261. https://doi.org/10.1023/A:1012784129883 doi: 10.1023/A:1012784129883
|
| [20] |
R. F. Zhang, M. C. Li, Bilinear residual network method for solving the exactly explicit solutions of nonlinear evolution equations, Nonlinear Dynam., 108 (2022), 521. https://doi.org/10.1023/A:1012784129883 doi: 10.1023/A:1012784129883
|
| [21] |
X. R. Xie, R. F. Zhang, Neural network-based symbolic calculation approach for solving the Korteweg–de Vries equation, Chaos. Soliton. Fract., 194 (2025), 116232. https://doi.org/10.1016/j.chaos.2025.116232 doi: 10.1016/j.chaos.2025.116232
|
| [22] |
Q. S. Liu, Z. Y. Zhang, R. G. Zhang, C. X. Huang, Dynamical analysis and exact solutions of a new (2+1)-dimensional generalized Boussinesq model equation for nonlinear Rossby waves, Commun. Theor. Phys., 71 (2019), 9. https://doi.org/10.5194/egusphere-2025-123 doi: 10.5194/egusphere-2025-123
|
| [23] |
Q. Ouyang, Z. Zhang, Q. Wang, W. Ling, P. Zou, X. Li, Solitary, periodic, kink wave solutions of a perturbed high-order nonlinear Schrödinger equation via bifurcation theory, Propuls. Power. Res., 130 (2024), 1107. https://doi.org/10.1016/j.jppr.2024.07.001 doi: 10.1016/j.jppr.2024.07.001
|
| [24] |
U. Younas, M. Younis, A. R. Seadawy, S. T. R. Rizvi, S. Althobaiti, S. Sayed, Diverse exact solutions for modified nonlinear Schrödinger equation with conformable fractional derivative, Results Phys., 20 (2021), 103766. https://doi.org/10.1016/j.rinp.2020.103766 doi: 10.1016/j.rinp.2020.103766
|
| [25] |
U. Akram, A. R. Seadawy, S. T. R. Rizvi, M. Younis, S. Althobaiti, S. Sayed, Traveling wave solutions for the fractional Wazwaz–Benjamin–Bona–Mahony model in arising shallow water waves, Results Phys., 20 (2021), 103725. https://doi.org/10.1016/j.rinp.2020.103725 doi: 10.1016/j.rinp.2020.103725
|
| [26] |
A. R. Seadawy, M. Bilal, M. Younis, S. T. R. Rizvi, S. Althobaiti, M. M. Makhlouf, Analytical mathematical approaches for the double-chain model of DNA by a novel computational technique, Chaos. Soliton. Fract., 144 (2021), 110669. https://doi.org/10.1016/j.chaos.2021.110669 doi: 10.1016/j.chaos.2021.110669
|
| [27] |
A. R. Seadawy, S. U. Rehman, M. Younis, S. T. R. Rizvi, S. Althobaiti, M. M. Makhlouf, Modulation instability analysis and longitudinal wave propagation in an elastic cylindrical rod modelled with Pochhammer-Chree equation, Phys. Scripta, 96 (2021), 045202. https://doi.org/10.1088/1402-4896/abdcf7 doi: 10.1088/1402-4896/abdcf7
|
| [28] |
A. R. Seadawy, S. T. R. Rizvi, S. Ahmad, M. Younis, D. Baleanu, Lump, lump-one stripe, multiwave and breather solutions for the Hunter–Saxton equation, Open Phys., 96 (2021), 10. https://doi.org/10.1515/phys-2020-0224 doi: 10.1515/phys-2020-0224
|
| [29] |
M. Bilal, A. R. Seadawy, M. Younis, S. T. R. Rizvi, K. E. Rashidy, S. F. Mahmoud, Analytical wave structures in plasma physics modelled by Gilson-Pickering equation by two integration norms, Results Phys., 23 (2021), 103959. https://doi.org/10.1016/j.rinp.2021.103959 doi: 10.1016/j.rinp.2021.103959
|
| [30] |
S. T. R. Rizvi, A. R. Seadawy, M. Younis, I. Ali, S. Althobaiti, S. F. Mahmoud, Soliton solutions, Painleve analysis and conservation laws for a nonlinear evolution equation, Results Phys., 23 (2021), 103999. https://doi.org/10.1016/j.rinp.2021.103999 doi: 10.1016/j.rinp.2021.103999
|
| [31] |
S. T. R. Rizvi, A. R. Seadawy, M. Younis, S. Iqbal, S. Althobaiti, A. M. E. Shehawi, Various optical soliton for a weak fractional nonlinear Schrödinger equation with parabolic law, Results Phys., 23 (2021), 103998. https://doi.org/10.1016/j.rinp.2021.103998 doi: 10.1016/j.rinp.2021.103998
|
| [32] |
A. R. Seadawy, S. T. Rizvi, I. Ali, M. Younis, K. Ali, M. M. Makhlouf, et al., Conservation laws, optical molecules, modulation instability and Painlevé analysis for the Chen–Lee–Liu model, Opt. Quant. Electron., 23 (2021), 15. https://doi.org/10.1007/s11082-021-02823-0 doi: 10.1007/s11082-021-02823-0
|
| [33] |
K. U. Tariq, H. Zainab, A. R. Seadawy, M. Younis, S. T. R. Rizvi, A. M. A. Allah, On some novel optical wave solutions to the paraxial M-fractional nonlinear Schrödinger dynamical equation, Opt. Quant. Electron., 23 (2021), 14. https://doi.org/10.1007/s11082-021-02855-6 doi: 10.1007/s11082-021-02855-6
|
| [34] |
S. Ahmed, R. Ashraf, A. R. Seadawy, S. T. R. Rizvi, M. Younis, A. Althobaiti, et al., Lump, multi-wave, kinky breathers, interactional solutions and stability analysis for general $(2+ 1)$-rth dispersionless Dym equation, Results Phys., 23 (2021), 104160. https://doi.org/10.1016/j.rinp.2021.104160 doi: 10.1016/j.rinp.2021.104160
|
| [35] |
M. Bilal, A. R. Seadawy, M. Younis, S. T. R. Rizvi, H. Zahed, Dispersive of propagation wave solutions to unidirectional shallow water wave Dullin–Gottwald–Holm system and modulation instability analysis, Math. Method. Appl. Sci., 44 (2021), 4104. https://doi.org/10.1016/j.padiff.2022.100444 doi: 10.1016/j.padiff.2022.100444
|
| [36] |
M. Younis, A. R. Seadawy, M. Bilal, S. T. R. Rizvi, S. Althobaiti, M. Alkafafy, Nonlinear dynamical wave structures to the Date–Jimbo–Kashiwara–Miwa equation and its modulation instability analysis, Mod. Phys. Lett. B, 35 (2021), 2150300. https://doi.org/10.1016/j.aml.2024.109348 doi: 10.1016/j.aml.2024.109348
|
| [37] |
S. Ahmed, A. M. Mubaraki, Pulse-driven robot: Motion via distinct lumps and rogue waves, Opt. Quant. Electron., 65 (2024), 225. https://doi.org/10.1007/s11082-023-05816-3 doi: 10.1007/s11082-023-05816-3
|
| [38] |
A. R. Seadawy, S. U. Rehman, M. Younis, S. T. R. Rizvi, S. Althobaiti, M. M. Makhlouf, Modulation instability analysis and longitudinal wave propagation in an elastic cylindrical rod modelled with Pochhammer-Chree equation, Phys. Scripta, 96 (2021), 045202. https://doi.org/10.1088/1402-4896/abdcf7 doi: 10.1088/1402-4896/abdcf7
|
| [39] |
Y. Liu, B. Li, A. M. Wazwaz, Novel higher order breathers and rogue waves in the Boussinesq equation via determinants, Int. J. Mod. Phys. B, 43 (2020), 3715. https://doi.org/10.1002/mma.6148 doi: 10.1002/mma.6148
|
| [40] |
K. L. Geng, D. S. Mou, C. Q. Dai, Nondegenerate solitons of 2-coupled mixed derivative nonlinear Schrödinger equations, Nonlinear Dynam., 111 (2023), 617. https://doi.org/10.1016/j.physleta.2019.126201 doi: 10.1016/j.physleta.2019.126201
|
| [41] |
J. J. Fang, D. S. Mou, H. C. Zhang, Y. Y. Wang, Discrete fractional soliton dynamics of the fractional Ablowitz-Ladik model, Optik, 228 (2021), 166186. https://doi.org/10.1016/j.ijleo.2020.166186 doi: 10.1016/j.ijleo.2020.166186
|
| [42] |
W. B. Bo, R. R. Wang, Y. Fang, Y. Y. Wang, C. Q. Dai, Prediction and dynamical evolution of multipole soliton families in fractional Schrödinger equation with the PT-symmetric potential and saturable nonlinearity, Nonlinear Dynam., 111 (2023), 1588. https://doi.org/10.1007/s11071-022-07884-8 doi: 10.1007/s11071-022-07884-8
|
| [43] |
X. Wen, R. Feng, J. Lin, W. Liu, F. Chen, Q. Yang, Distorted light bullet in a tapered graded-index waveguide with PT symmetric potentials, Optik, 248 (2021), 168092. https://doi.org/10.1016/j.ijleo.2021.168092 doi: 10.1016/j.ijleo.2021.168092
|
| [44] |
R. R. Wang, Y. Y. Wang, C. Q. Dai, Influence of higher-order nonlinear effects on optical solitons of the complex Swift-Hohenberg model in the mode-locked fiber laser, Opt. Laser. Technol., 152 (2022), 108103. https://doi.org/10.1016/j.optlastec.2022.108103 doi: 10.1016/j.optlastec.2022.108103
|
| [45] |
H. Y. Wu, L. H. Jiang, One-component and two-component Peregrine bump and integrated breather solutions for a partially nonlocal nonlinearity with a parabolic potential, Optik, 262 (2022), 169250. https://doi.org/10.1016/j.ijleo.2022.169250 doi: 10.1016/j.ijleo.2022.169250
|
| [46] |
Y. Fang, G. Z. Wu, X. K. Wen, Y. Y. Wang, D. D. Dai, Predicting certain vector optical solitons via the conservation-law deep-learning method, Opt. Laser. Technol., 155 (2022), 108428. https://doi.org/10.1016/j.optlastec.2022.108428 doi: 10.1016/j.optlastec.2022.108428
|
| [47] |
S. T. Rizvi, A. R. Seadawy, S. Ahmed, F. Ashraf, Novel rational solitons and generalized breathers for (1+1)-dimensional longitudinal wave equation, Mod. Phys. Lett. B, 37 (2023), 2350269. https://doi.org/10.1142/S0217979223502697 doi: 10.1142/S0217979223502697
|
| [48] |
Q. Zhou, Q. Zhu, H. Yu, Y. Liu, C. Wei, P. Yao, et al., Bright, dark and singular optical solitons in a cascaded system, Laser Phys., 25 (2014), 025402. https://doi.org/10.1088/1054-660X/25/2/025402 doi: 10.1088/1054-660X/25/2/025402
|
| [49] |
X. Zhang, Q. C. Zhong, V. Kadirkamanathan, J. He, J. Huang, Source-side series-virtual-impedance control to improve the cascaded system stability and the dynamic performance of its source converter, IEEE T. Power. Electr., 34 (2018), 5866. https://doi.org/10.1109/TPEL.2018.2867272 doi: 10.1109/TPEL.2018.2867272
|
| [50] |
M. A. Banaja, A. A. A. Qarni, H. O. Bakodah, Q. Zhou, S. P. Moshokoa, A. Biswas, The investigate of optical solitons in cascaded system by improved adomian decomposition scheme, Optik, 130 (2019), 1114. https://doi.org/10.1016/j.ijleo.2016.11.125 doi: 10.1016/j.ijleo.2016.11.125
|
| [51] |
A. Sonmezoglu, M. Ekici, M. Mirzazadeh, Q. Zhou, M. F. Mahmood, E. Zerrad, et al., Optical solitons in cascaded system by extended trial function method, J. Comput. Theor. Nanos., 13 (2016), 5398. https://doi.org/10.1166/jctn.2016.5429 doi: 10.1166/jctn.2016.5429
|
| [52] |
N. Raza, A. Jhangeer, S. Arshed, M. Inc, The chaotic, supernonlinear, periodic, quasiperiodic wave solutions and solitons with cascaded system, Wave Random Complex, 13 (2021), 15. https://doi.org/10.1080/17455030.2021.1945164 doi: 10.1080/17455030.2021.1945164
|
| [53] |
A. R. Seadawy, S. T. Rizvi, M. A. Ashraf, M. Younis, M. Hanif, Rational solutions and their interactions with kink and periodic waves for a nonlinear dynamical phenomenon, Mod. Phys. Lett. B, 35 (2021), 2150236. https://doi.org/10.1142/S0217979221502362 doi: 10.1142/S0217979221502362
|
| [54] |
H. Wang, Lump and interaction solutions to the $(2+ 1)$-dimensional Burgers equation, Appl. Math. Lett., 85 (2018), 34. https://doi.org/10.1016/j.aml.2018.05.010 doi: 10.1016/j.aml.2018.05.010
|
| [55] |
Y. Zhou, S. Manukure, W. X. Ma, Lump and lump-soliton solutions to the Hirota Satsuma equation, Commun. Nonlinear Sci., 68 (2019), 62. https://doi.org/10.1016/j.cnsns.2018.07.038 doi: 10.1016/j.cnsns.2018.07.038
|
| [56] |
P. Wu, Y. Zhang, I. Muhammad, Q. Yin, Lump, periodic lump and interaction lump stripe solutions to the $(2+1)$-dimensional B-type Kadomtsev–Petviashvili equation, Mod. Phys. Lett. B, 32 (2018), 1850106. https://doi.org/10.1142/S0217984918501063 doi: 10.1142/S0217984918501063
|
| [57] |
B. Q. Li, Y. L. Ma, Multiple-lump waves for a $(3+1)$-dimensional Boiti–Leon–Manna–Pempinelli equation arising from incompressible fluid, Comput. Math. Appl., 76 (2018), 214. https://doi.org/10.1016/j.camwa.2018.04.015 doi: 10.1016/j.camwa.2018.04.015
|
| [58] |
M. M. Khater, Computational simulations; propagation behavior of the Riemann wave interacting with the long wave, J. Ocean Eng. Sci, 342 (2023), 453. https://doi.org/10.1016/j.joes.2022.05.022 doi: 10.1016/j.joes.2022.05.022
|
| [59] |
R. Hirota, Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett., 27 (1971), 1192. https://doi.org/10.1103/PhysRevLett.27.1192 doi: 10.1103/PhysRevLett.27.1192
|