Research article Topical Sections

Temporal topological operators with picture fuzzy multifunctions

  • Published: 22 July 2025
  • This paper introduces the notion of a temporal picture fuzzy modal topological structure (TPFMTS). These structures are based on novel temporal picture fuzzy topological operators as common modal topological operators standing for the closure and interior operators. The paper discusses several fundamental properties of these new TPFMTSs. The constructed temporal picture fuzzy modal topological operators establish that some properties that were considered satisfactory in the temporal intuitionistic fuzzy modal topological structures, as defined by Atanassov in 2023, are not fulfilled. Also, we introduce the concepts of $ TPF^u $ and $ TPF^l $-continuous and almost continuous multifunctions. Several properties and characterizations of the presented continuous multifunctions and their types of continuity are established. Some examples are given to explain the correct implications between these notions.

    Citation: D. L. Shi, M. N. Abu_Shugair, S. E. Abbas, Ismail Ibedou. Temporal topological operators with picture fuzzy multifunctions[J]. AIMS Mathematics, 2025, 10(7): 16477-16497. doi: 10.3934/math.2025738

    Related Papers:

  • This paper introduces the notion of a temporal picture fuzzy modal topological structure (TPFMTS). These structures are based on novel temporal picture fuzzy topological operators as common modal topological operators standing for the closure and interior operators. The paper discusses several fundamental properties of these new TPFMTSs. The constructed temporal picture fuzzy modal topological operators establish that some properties that were considered satisfactory in the temporal intuitionistic fuzzy modal topological structures, as defined by Atanassov in 2023, are not fulfilled. Also, we introduce the concepts of $ TPF^u $ and $ TPF^l $-continuous and almost continuous multifunctions. Several properties and characterizations of the presented continuous multifunctions and their types of continuity are established. Some examples are given to explain the correct implications between these notions.



    加载中


    [1] M. N. Abu_Shugair, A. A. Abdallah, M. Alzoubi, S. E. Abbas, I. Ibedou, Picture fuzzy multifunctions and modal topological structures, AIMS Mathematics, 10 (2025), 7430–7448. http://doi.org/10.3934/math.2025341 doi: 10.3934/math.2025341
    [2] T. M. Al-shami, A. Mhemdi, Generalized frame for orthopair fuzzy sets: $(m, n)$-fuzzy sets and their applications to multi-criteria decision-making methods, Information, 14 (2023), 56. http://doi.org/10.3390/info14010056 doi: 10.3390/info14010056
    [3] S. Ashraf, S. Abdullah, T. Mahmood, F. Ghani, T. Mahmood, Spherical fuzzy sets and their applications in multi-attribute decision making problems, J. Intell. Fuzzy Syst., 36 (2019), 2829–2844. http://doi.org/10.3233/JIFS-172009 doi: 10.3233/JIFS-172009
    [4] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87–96. http://doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3
    [5] K. Atanassov, Intuitionistic fuzzy modal topological structure, Mathematics, 10 (2022), 3313. http://doi.org/10.3390/math10183313 doi: 10.3390/math10183313
    [6] K. Atanassov, On Intuitionistic Fuzzy Temporal Topological Structures, Axioms, 12 (2023), 182. http://doi.org/10.3390/axioms12020182 doi: 10.3390/axioms12020182
    [7] K. Atanassov, R. Tsvetkov, New intuitionistic fuzzy operations, operators and topological structures, Iran. J. Fuzzy Syst., 20 (2023), 37-53.
    [8] K. Atanassov, N. Angelova, T. Pencheva, On two intuitionistic fuzzy modal topological structures, Axioms, 12 (2023), 408. http://doi.org/10.3390/axioms12050408 doi: 10.3390/axioms12050408
    [9] K. Atanassov, Remark on Intuitionistic Fuzzy Temporal Modal Topological Structures, Axioms, 13 (2024), 256. http://doi.org/10.3390/axioms13040256 doi: 10.3390/axioms13040256
    [10] P. Blackburn, van Benthem, J. Wolter, Handbook of Modal Logic, New York: Elsevier, 2006.
    [11] B. C. Cuong, Picture fuzzy sets, J. Comput. Sci. Cybern., 30 (2014), 409.
    [12] M. Fitting, R. Mendelsohn, First Order Modal Logic, Dordrecht: Kluwer, 1998. http://doi.org/10.1007/978-94-011-5292-1
    [13] H. Garg, M. Atef, Cq-ROFRS: covering ${\text{q}}$-rung orthopair fuzzy rough sets and its application to multi-attribute decision making process, Complex Intell. Syst., 8 (2022), 2349–2370. http://doi.org/10.1007/s40747-021-00622-4 doi: 10.1007/s40747-021-00622-4
    [14] L. Li, R. Zhang, J.Wang, X. Shang, K. Bai, A novel approach to multi-attribute group decision-making with ${\text{q}}$-rung picture linguistic information, Symmetry, 10 (2018), 172. http://doi.org/10.3390/sym10050172 doi: 10.3390/sym10050172
    [15] G. Mints, A Short Introduction to Modal Logic, Chicago: University of Chicago Press, 1992.
    [16] M. Olgun, M. Ü nver, S. Yardmc, Pythagorean fuzzy points and applications in pattern recognition and Pythagorean fuzzy topologies, Soft Comput., 25 (2021), 5225–5232. http://doi.org/10.1007/s00500-020-05522-2 doi: 10.1007/s00500-020-05522-2
    [17] A. Razaq, I. Masmali, H. Garg, U. Shuaib, Picture fuzzy topological spaces and associated continuous functions, AIMS Mathematics, 7 (2024), 14840–14861. http://doi.org/10.3934/math.2022814 doi: 10.3934/math.2022814
    [18] T. Senapati, R. R. Yager, Fermatean fuzzy weighted averaging/geometric operators and its application in multi-criteria decision making methods, Eng. Appl. Artif. Intell., 85 (2019), 112–121. http://doi.org/10.1016/j.engappai.2019.05.012 doi: 10.1016/j.engappai.2019.05.012
    [19] D. L. Shi, M. N. Abu_Shugair, S. E. Abbas, I. Ibedou, Picture fuzzy modal ideal multifunctions, Eur. J. Pure Appl. Math., 18 (2025), 5956. http://doi.org/10.29020/nybg.ejpam.v18i2.5956 doi: 10.29020/nybg.ejpam.v18i2.5956
    [20] I. Silambarasan, Some algebraic properties of picture fuzzy sets, Bull. Int. Math. Virtual Inst., 11 (2021), 429–442.
    [21] R. R. Yager, Pythagorean fuzzy subsets, In: Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), 2013, 57–61.
    [22] R. R. Yager, Generalized orthopair fuzzy sets, IEEE T. Fuzzy Syst., 25 (2016), 1222–1230. http://doi.org/10.1109/TFUZZ.2016.2604005 doi: 10.1109/TFUZZ.2016.2604005
    [23] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. http://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(601) PDF downloads(31) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog